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1 Introduction

In the following notes some classical results of Moduli Spaces are discussed.
At first, the definitions of Moduli problems, fine and coarse moduli spaces
and examples are given. Afterwards, the case of principally polarized abelian
monifolds is considered. The Siegel moduli space is a coarse moduli space for
such families but, a slight modification (adding a so called level(n)-structure)
will give a fine moduli space for p.p.a.m..

2 Moduli Problems, fine and coarse moduli spaces
and examples.

Intuitively, a moduli problem is a classification task. Families of considered
objects are collected up to isomorphisms; a moduli space is an object which
has an appropriate universal property respect to classes of families.

Definition 1. Let C be a category, a moduli problem is a controvariant
functor F : Cop → Set.

Classicals moduli problems are those where C is the category of Schemes,
complex manifolds, complex analytic spaces, etc..
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Definition 2. A moduli problem is said representable if it exists an element
c̃ ∈ C such that F is naturally isomorphic to the functor HomC(−, c̃); c̃ is
called a fine moduli space for the moduli problem F.

Definition 3. A coarse moduli space is an element c̄ ∈ C such that it
exists a natural transformation F ⇒ HomC(−, c̄) with the properties:
i) for every other d ∈ C and natural transformation F ⇒ HomC(−, d), it
exists a unique arrow c→ d which makes the obvious diagram commutative.
ii) The map F (?) → HomC(?, c̄) is an isomorphism, where ? is the initial
object of C.

For those who are familiar with S. MacLane’ book, a coarse moduli space
is an initial arrow from F to the functor which takes an element d ∈ C to
the controvariant functor HomC(−, d). Moreover, observe that a fine moduli
space is unique up to isomorphisms and, a fine moduli space is obviously a
coarse moduli space.

From now on, the moduli problems considered will be isomorphism classes
of families of objects on objects of a given category. For instance, a family
ξ of elliptic curves on a complex manifold T is a proper holomorphic map
p : ξ → T , such that each fiber ξt := p−1(t) is an elliptic curve, and it exists
a section which gives the marked points of the elliptic curves.
Let Ell : MfldC → Set the functor which takes a complex manifold T to the
isomorphism class of families of elliptic curves on T , and it takes a morphism
f : S → T to the map Ell(T ) → Ell(S) which takes an equivalence class
π : ξ → T to the equivalence class of the pullback family defined as follows:

f∗ξ = {(s, x) ∈ S × ξ : f(s) = π(x)} → S.

Remark 1. It is an easy exercise to show that for moduli problems of
families, a fine moduli space is equivalent to a manifold M and a family
U ∈ Ell(M) which has the following universal property: for any manifold T
and ξ ∈ Ell(T ), there exists a unique map f : T →M such that the pullback
of U is isomorphic to ξ, i.e. f∗U ∼= ξ, such a family is called the universal
family (it is unique up to isomorphism).

Observation 1. A fine moduli space is a rigid structure which often could
not exist. Problems could arise when the objects of families under considera-
tion have non-trivial automorphisms. In fact, if a curve ξ0 has a non-trivial
isomorphism, it could be possible to build a family ξ → T such that the fibers
ξt ∼= ξ0 but ξ � T × ξ0. Thus, if U ∈ Ell(M) is a fine moduli space, it exists
a unique map h : T →M such that ξ ∼= h∗U = T × ξ0, which is absurde.

Example 1. Consider a curve ξ0 and a non-trivial automorphism σ. Define
an action of Z on C× ξ0:

n ∗ (z, x) = (z + 2inπ, σnx).
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The quotient of C by the action of Z is equal to C∗. Moreover, the family
(C × ξ0)/Z → C∗ has fibers isomorphic to ξ0 but it is not isomorphic to
C∗ × ξ0 → C∗, otherwise the automorphism σ would be trivial, which is an
absurde.

The above example and observation imply the following lemma:

Lemma 1. Elliptic curves do not have a fine moduli space.

Moreover, as it will be shown later elliptic curves have a coarse moduli
space:

Lemma 2. C is a coarse moduli space for elliptic curves.

An useful strategy to trivialise automorphisms will be to add a so called
level(n)-structure, as it will be shown in next sections.

3 Principally polarized abelian manifolds.

Recall that a complex torus T of dimension g is given by V/Λ, where V is a
C-vector space of dimension g and Λ is a full lattice of rank 2g.

Definition 4. A hermitian form on V is a map H : V × V → C which is
C-linear in the first argument and H(u, v) = H(v, u), ∀u, v ∈ V . If H is an
hermitian form, let define E := =H; then, H is called a Riemann form if
E(Λ,Λ) ⊆ Z.
Two Riemann form H1, H2 are said equivalent if there are n1, n2 ∈ N, such
that n1H1 = n2H2. H̃ will denote the equivalence class of H.

Note that E is R-bilinear, antisymmetric and E(z, w) = E(iz, iw).

Definition 5. An abelian manifold is a complex torus which has a positive
definite Riemann form.

Due to the "main theorem of complex tori/ abelian varieties", abelian
manifolds and abelian varieties are the same:

Theorem 1. A complex torus X ∼= V/Λ is an abelian manifold if and only
if it has the structure of an abelian variety.

Definition 6. A polarized abelian manifold is a pair (X, H̃), where X is an
abelian manifold and H̃ is the equivalence class of the positive Riemann form
of X. H̃ is called (homogeneous) polarization of X.

A map between polarized abelian manifolds φ : (X1.H̃1) → (X2, H̃2) is
a holomorphic map (which is a homomorphism of groups) between the com-
plex tori φ : X1 → X2 such that the lift φ̃ : V1 → V2 is C-linear and φ̃?H2 is
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equivalent to H1.

The following theorem, which states a fundamental property of polarized
abelian manifolds, will be useful in next section where it will be discussed
fine and coarse moduli spaces of these objects; this result is important from
the point of view of the observation in last section.

Theorem 2. The automorphism group Aut(X, H̃) of every polarized abelian
manifold (X, H̃) is finite.

Definition 7. A polarized abelian manifold (X, H̃) is called principally po-
larized if it exists an element H̄ in the polarization class, such that Pf(E)=1.
It means that E is equal to [

0 Ig
−Ig 0

]
with respecto to a symplectic basis {λ1, ......, λ2g} of Λ.

Obeserve that every abelian manifold of dimension 1 (i.e. elliptic curves)
is principally polarized, because of it has always a positive definitie Riemann
form such that Pf(E)=1. In fact, it is an easy proof to show that if {λ1.λ2}
is a basis of Λ such that Im(λ1/λ2) > 0 then, the unique R-bilinear form
E : C × C → R such that E(λ1, λ2) = 1 is the imaginary part of a positive
definite Riemann form H.

Moreover, the following theorem states that up to isogenies polarized
abelian manifolds are principally polarized.

Theorem 3. Every polarized abelian manifold is isogeneous to a principally
plorized abelian manifold.

Let now define the set of isomorphism classes Ag of principally polarized
abelian manifolds.

Case g=1: Let H = {τ ∈ C : Imτ > 0} be the Poincaré upper half
plane, and consider SL2(Z) the two dimensional special linear subgroup with
integer coefficients. SL2(Z) acts on H as follows:[

a b
c d

]
∗ τ =

aτ + b

cτ + d
.

Recall that an elliptic curve is a complex tori of dimension one, which
can be written as X = C/Λ = C/Zω1 + Zω2, which is in turn isomorphic
to Xτ := C/τZ + Z, for some τ such that Imτ > 0. Thus, see that two
ellipctic curves Xτ1 , Xτ2 are isomorphic if and only if it exists an element A
in SL2(Z) such that A ∗ τ1 = τ2, the following bijection of sets is proved:
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A1
∼= SL2(Z)\H.

Moreover, observe that, by the j-invariant, A1
∼= C.

Let now consider the principal congruence subgroup Γ(n) = ker(SL2(Z) →
SL2(Z/nZ)) which is equal to,

{
[
a b
c d

]
∈ SL2(Z) : a, d ≡ 1 (mod n), b, c ≡ 0 (mod n) }.

For every elliptic curveXτ the points {1/n, τ/n} form a basis of the n-torsion
subgroup Xτ , and it is possible to prove that this additional structure is
preserved by Γ(n), i.e.:

Lemma 3. Two elliptic curves with a choice of a basis of the n-torsion points
[Xτ , 1/n+ Λτ , τ/n+ Λτ ], [Xτ ′ , 1/n+ Λτ ′ , τ

′/n+ Λτ ′ ] are isomorphic if and
only if it exists an element M ∈ Γ(n) such that M ∗τ ′ = τ , and γ1/n = 1/n,
γτ/n = τ ′/n (mod n), where γ := cτ ′ + d. See for a complete treatment
[DS05].

A choice of a basis of n-torsion points Xτ [n] is also called a level(n)-
structure. Denoting Ã1 the set of isomorphism classes of these elliptic curves,
the above lemma states the following bijection

Ã1
∼= Γ(n)\H.

Case g>1: The above results can be generalized for g > 1.
Following [Lan12], let X = V/Λ be a pricipally polarized abelian manifold,
{v1, . . . , vg} a basis of V = Cg and {ω1, . . . , ω2g} a symplectic basis of Λ.
Then, X can be represented as a triple

(Cg,Ω, J)

where Ω in the g × 2g matrix which columns are ωi, and

J =

[
0 Ig
−Ig 0

]
.

A general discussion leads to the following lemma, given a full lattice Λ of
Cg and let Ω be the matrix which columns are a basis of Λ:

Lemma 4. A triple (Cg,Ω, P ), where P is an alternatig matrix, defines an
abelian manifold if and only if:
(R1) ΩP−1

t
Ω = 0,

(R2) 2i(ΩP−1
t
Ω)−1 > 0.
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In fact, considering the unique bilinear alternating form E(Ωx,Ωy) =
xtPy, property (R1) is equivalent to the fact that E(iΩx,Ωy) is a symmet-
ric form and, moreover, it is possible to show that the associated Riemann
form H(v, w) = E(iv, w) + iE(v, w) is represented by the matrix in (R2).
Considering Ω as [Ω1,Ω2] with Ωi ∈ Matg(C) gives a practical rewriting of
the above conditions:
(R1’) Ω2Ω

t
1 − Ω1Ω

t
2 = 0,

(R2’) 2i(Ω2Ω
t
1 − Ω1Ω

t
2) > 0.

Now let Hg be the Siegel upper half plane:

Hg := {τ ∈Matg(C) : τ = τ t, Im(τ) > 0},

and consider also:

R := {Ω = [Ω1,Ω2] : (R1′), (R2′) holds}
Sp2g(R) := {M ∈Mat2g(R) : MJM t = J}.

Lemma 5. Let Ω = [Ω1,Ω2] ∈ R, then:
(i) If ρ ∈ GLg(C), then ρΩ := [ρΩ1, ρΩ2] ∈ R.

(ii) If M =

[
A B
C D

]
∈ Sp2g(R), then ΩM := [Ω1A+Ω2C,Ω1B+Ω2D] ∈ R.

(iii) Ω1,Ω2 ∈ GLg(C).
(iv) Ω−12 Ω1 ∈ Hg.

By the above lemma it is possible to prove the following:

Proposition 1. Every principally polarized abelian manifold (Cg, [Ω1,Ω2], J)
is isomorphic to one of the form (Cg, [τ, Idg], J), for a τ ∈ Hg

Proof. See that Ω2 ∈ GLg(C), the multiplication by Ω2 is a change of base
and so an isomorpfinsm such that, Ω−12 [Ω1,Ω2] = [Ω−12 Ω1, Idg] ∈ R. More-
over, the change of base does not affect the description of E.

Now observe that Sp2g(R) acts on Hg in the following way:

M ∗ τ =

[
A B
C D

]
∗ τ := (Aτ + C)(Bτ +D)−1 for M ∈ R, τ ∈ Hg.

In fact, if Ω := [τ, Idg] ∈ R then the above lemma implies that
[τA + C, τB + D] = ΩM ∈ R. By (iv), (τB + D)−1(τA + C) ∈ Hg, thus,
M ∗ τ ∈ Hg because Hg and Sp2g(R) are closed under transposition. The
following theorem follows:

Theorem 4. There is a bijection Ag ∼= Sp2g(Z)\Hg.
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Proof. A principally polarized abelian manifold (Cg, [Ω1,Ω2], J) corresponds
to τ = Ω−12 Ω1 ∈ Hg. If (Cg, [Ω1,Ω2], J) ∼= (Cg, [Ω′1,Ω′2], J) it exists a matrix
M ∈ GL2g(Z) such tath Ω′ = ΩM t. With respect to the basis {ω′1, . . . , ω′2g},
E is represented by MJM t. Thus, the representation of E is unchanged if
and only if MJM t = J , i.e. if M ∈ SL2g(Z).

I follows a rough discussion on the generalization of the previuos results
adding a level(n)-structure for p.p.a.m. of dimension g > 1.

A level(n)-structure for X : Cg/Λ is a chioce of symplectic basis

H1(X,Z/nZ) ∼= Hom(π1(X),Z/nZ) ∼= Hom(Λ,Z/nZ)

The folowing proposition will be useful later when the moduli space of
such objects will be discussed, this result avoids problems discussed in ob-
servation 1.

Proposition 2. If n ≥ 3, if γ is an automorphism of a principally polarized
abelian manifod (X,H) which acts trivially on the lattice (modn), then γ = 1.

Let define

Γ(n) = ker(Sp2g(Z)→ Sp2g(Z/nZ)),

the following generalization holds:

Theorem 5. There is a bijection Ãg ∼= Γ(n)\Hg.

4 Siegel moduli space and fine moduli space for
p.p.a.m.

In this section moduli problems of p.p.a.m. are discussed, the quotient spaces
defined in the have the wanted structure.

Lemma 6. Every discrete subgroup of Sp2g(R) acts properly and discontin-
uosly on Hg. In particular Sp2g(Z) and Γ(n).

The following theorem can be found in the appendix of [BL13]:

Theorem 6. Let X be a complex analytic space and let G be a group act-
ing properly and discontinuously on X, then the quotient X/G is a complex
analytic space.

Corollary 1. Let X be a complex manifold and let G be a group acting freely
and properly and discontinuously on X, then the quotient X/G is a complex
manifold.
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Thus, Ag is a complex analytic space and observation 1, theorem 2 and
theorem 4 make Ag be a coarse moduli space for the moduli problem which
takes a complex analytic space to the set of equivalence classes of families of
p.p.a.m. defined on it.

Moreover, it is possible to show that Γ(n) acts freely on Hg and thus Ãg
is a complex manifold. As mentioned above, proposition 2 avoids problems
with non-trivial automorphisms . Ãg is actually a fine moduli space for
isomorphism classes of families of p.p.a.m. defined of complex manifols.
Moreover, the universal family is:

Hg × Cg/Γ(n)o Zg → Hg/Γ(n) ∼= Ãg.
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