Let $X \cong V/\Lambda$ be a complex abelian variety, D a divisor on X, and $\mathcal{L} = \mathcal{L}(D)$ the associated line bundle. We have seen that associated to each line bundle \mathcal{L} is a (normalized) theta function $\theta : V \to \mathbb{C}$ with the property that

$$\theta(z + \lambda) = e^{\pi H(z, \lambda) + \frac{1}{2} \pi H(\lambda, \lambda) + 2\pi i K(\lambda)} \theta(z) \quad \forall z \in V, \lambda \in \Lambda$$

where H is a Hermitian form on V, $E = \text{Im}(H)$, and $K : \Lambda \to \mathbb{R}$ is a linear functional satisfying

$$K(\lambda_1 + \lambda_2) - K(\lambda_1) - K(\lambda_2) \equiv \frac{1}{2} E(\lambda_1, \lambda_2) \pmod{\mathbb{Z}} \quad \forall \lambda_1, \lambda_2 \in \Lambda.$$

Conversely, for every such H and K, there is a unique divisor class in $\text{Pic}^0(X)$ (i.e. a line bundle $\mathcal{L}(H, K)$ unique up to isomorphism). Each H determines an element of the Neron-Severi group $\text{Pic}(X)/\text{Pic}^0(X)$, so the elements of $\text{Pic}^0(X)$ correspond to $H \equiv 0$ and K satisfying

$$K(\lambda_1, \lambda_2) - K(\lambda_1) - K(\lambda_2) \equiv 0 \pmod{\mathbb{Z}} \quad \forall \lambda_1, \lambda_2 \in \Lambda.$$

In other words, for \mathcal{L} a divisor class viewed as a line bundle (defined up to isomorphism) in $\text{Pic}^0(X)$, $\chi_{\mathcal{L}} : \Lambda \to \mathbb{C}, \lambda \mapsto e^{2\pi i K(\lambda)}$ is a character on Λ, and it completely determines the divisor class \mathcal{L} in $\text{Pic}^0(X)$. (In fact, $\text{Pic}^0(X)$ may be identified with the group of characters on Λ.) On the other hand, Hermitian forms H which are positive definite correspond to ample line bundles $\mathcal{L} \in \text{Pic}(X)$.

Now recall the definition of polarization:

Definition 0.1. For any abelian variety X, a **polarization** is a homomorphism from X to $\text{Pic}^0(X)$ of the form

$$\phi_{\mathcal{L}} : x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$$

for an ample line bundle \mathcal{L} of X.

For a complex abelian variety X, we want to identify $\text{Pic}^0(X)$ with X^\vee, the dual of X, and see explicitly how any polarization $\phi_{\mathcal{L}}$ is an isogeny of X onto X^\vee.
Let \mathcal{L} be an ample line bundle on X inducing the map $\phi_{\mathcal{L}} : X \to \text{Pic}^0(X)$, $x \mapsto t^*_x \mathcal{L} \otimes \mathcal{L}^{-1}$, with associated H and K, so that we can write \mathcal{L} as $\mathcal{L}(H, K)$. For a point $x \in X$, we want to find the Hermitian form $t^*_x H$ and linear functional $t^*_x K$ associated to $t^*_x \mathcal{L}$. Let $a \in V$ be any point which projects down to $x \in X \cong V/\Lambda$. Then the functional relation of the pullback $\theta' := t^*_a \theta$ associated to $t^*_a \mathcal{L}$ can be written as

$$
\theta'(z + \lambda) = e^{\pi H(z+a,\lambda) + \frac{1}{2} H(\lambda,\lambda) + 2\pi i K(\lambda)} \theta'(z) \quad \forall z \in V, \lambda \in \Lambda.
$$

We may replace $\theta'(z)$ by $e^{\pi H(z,a)} \theta'(z)$ since $e^{-\pi H(z,a)}$ is a non-vanishing holomorphic function on V. This adds a factor of $e^{-\pi H(a,\lambda)}$ to the functional equation above, so that now we have

$$
\theta'(z + \lambda) = e^{\pi H(z+a,\lambda) + \frac{1}{2} H(\lambda,\lambda) + 2\pi i K(\lambda) - H(a,\lambda)} \theta'(z)
= e^{\pi H(a,\lambda) - \pi H(\lambda,\lambda)} \cdot e^{\pi H(z,\lambda) + \frac{1}{2} H(\lambda,\lambda) + 2\pi i K(\lambda)} \theta'(z)
= e^{2\pi i E(a,\lambda)} \cdot e^{\pi H(z,\lambda) + \frac{1}{2} H(\lambda,\lambda) + 2\pi i K(\lambda)} \theta'(z) \quad \forall z \in V, \lambda \in \Lambda.
$$

Therefore we see that $t^*_x H = H$ and $t^*_x K(\lambda) = E(a, \lambda) + K(\lambda)$. It follows that $\phi_{\mathcal{L}}(x) = t^*_x \mathcal{L} \otimes \mathcal{L}^{-1}$ has associated Hermitian form $t^*_x H - H = 0$ and linear functional $t^*_x K - K = E(a, \lambda)$. Therefore, the element $t^*_x \mathcal{L} \otimes \mathcal{L}^{-1} \in \text{Pic}^0(X)$ is uniquely characterized by the function $\chi_{\mathcal{L}, x} : \lambda \mapsto e^{2\pi i E(a,\lambda)}$, which is in fact a character on Λ. (Note that this is defined independently of the choice of $a \in V$ lying above $x \in X$.)

This leads to the following proposition:

Proposition 0.2. Let X be a complex abelian variety and let $\mathcal{L} = \mathcal{L}(H, K)$ be an ample line bundle on X (H is a positive definite Hermitian form and $E = \text{Im}(H)$ is the associated non-degenerate Riemann form). Then the map

$$
\phi_{\mathcal{L}} : X \to x \mapsto t^*_x \mathcal{L} \otimes \mathcal{L}^{-1}
$$

as described above is a surjective homomorphism of abstract groups.

Proof: We have characterized this map as $x \mapsto \chi_{\mathcal{L}, x}$ as defined above. It is obvious from the construction that $\chi_{\mathcal{L}, x_1 + x_2} = \chi_{\mathcal{L}, x_1} \chi_{\mathcal{L}, x_2}$, so we have a homomorphism of abstract groups. Next we want to show that it is surjective. By above discussion, we may view $\text{Pic}^0(X)$ as the group of characters on Λ. Any such character is of the form $\lambda \mapsto e^{2\pi i K(\lambda)}$, where K is some \mathbb{R}-linear functional on V. But since $E : V \times V \to \mathbb{R}$ is a non-degenerate pairing, every
\[\mathbb{R}-\text{linear functional on } V \text{ is of the form } z \mapsto E(a, z) \text{ for some } a \in V. \]

Defining \(K \) as \(\lambda \mapsto E(a, \lambda) \) shows that our character in \(\text{Pic}^0(X) \) is \(\mathcal{L}' = \mathcal{L}'(0, K) \). But by the above discussion, \(\mathcal{L}' \cong t_x^* \mathcal{L} \otimes \mathcal{L}^{-1} \), where \(x \in X \) is the image of \(a \) modulo \(\Lambda \). Therefore, every element in \(\text{Pic}^0(X) \) is \(\phi_\mathcal{L}(x) \) for some \(x \in X \).

Proposition 0.3. Choose a basis \(\{v_1, v_2, \ldots, v_{2g}\} \) of \(V \). Using the notation of Proposition 1, the kernel of \(\phi_\mathcal{L} \) is a finite subgroup of \(X \) of order \(\det(E) \), where \(E \) is considered as the matrix whose \((i, j)\)th entry is \(E(v_i, v_j) \).

Remark 0.4. By Frobenius, there exists a symplectic basis \(\{\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g\} \) of the free \(\mathbb{Z}\)-module \(\Lambda \) for the alternating form \(E \). This symplectic basis has the property that \(E(\alpha_i, \alpha_j) = E(\beta_i, \beta_j) = 0 \) for \(1 \leq i, j \leq g \), and \(E(\alpha_i, \beta_i) = d_i \) for \(1 \leq i \leq g \) for integers \(d_1 | d_2 | \ldots | d_g \). Then \(E \), when expressed as a matrix with respect to this symplectic basis, has integer determinant \((d_1d_2\ldots d_g)^2 \). Since \(\mathcal{L} \) is ample, \(E \) is non-degenerate, so \(d_i \neq 0 \) for \(1 \leq i \leq g \), and therefore, \(\det(E) \) (which does not depend on the choice of basis) must be a positive integer.

Proof. The kernel of \(\phi_\mathcal{L} \) is precisely those \(x \in X \) such that the character \(\chi_{\mathcal{L}, x} \) is trivial – that is, \(E(a, \lambda) \in \mathbb{Z} \) for all \(\lambda \in \Lambda \) (and a choice of \(a \in V \) whose image modulo \(\Lambda \) is \(x \)). Write \(a \) as a vector \(\langle a_1, \ldots, a_g, b_1, \ldots, b_g \rangle \) with respect to the symplectic basis from Remark 3. Then \(E(a, \alpha_i) = -d_i b_i \) and \(E(a, \beta_i) = d_i a_i \). The condition that \(E(a, \lambda) \in \mathbb{Z} \) for all \(\lambda \in \Lambda \), therefore, is equivalent to \(-d_1 b_1, \ldots, -d_g b_g, d_1 a_1, \ldots, d_g a_g \in \mathbb{Z} \). This is the case if and only if \(a \) is an element of the free \(\mathbb{Z}\)-module generated by \(\{\alpha_1/d_1, \ldots, \alpha_g/d_g, \beta_1/d_1, \ldots, \beta_g/d_g\} \), which is a full lattice containing \(\Lambda \) as a sublattice of index \((d_1d_2\ldots d_g)^2 = \det(E) \). This lattice modulo \(\Lambda \) is a finite subgroup of \(X \) of order \(\det(E) \), thus proving the proposition.

\[\square \]

Our final goal is to describe \(\text{Pic}^0(X) \) as a complex abelian variety \((X^\vee, \text{the dual of } X) \), such that \(\phi_\mathcal{L} \) is an isogeny. In order to do this, we use the definition of a complex abelian variety as a complex torus \(V^*/\Lambda^* \) equipped with a non-degenerate Riemann form \(H^* \). We have already shown that \(\text{Pic}^0(X) \) can be identified with the group of characters on \(\Lambda \). Each character can be expressed as \(\lambda \mapsto e^{2\pi i K(\lambda)} \) for \(K \) an \(\mathbb{R}\)-linear functional of \(V \). Let \(\xi : V \to \mathbb{C} \) be defined as \(\xi(a) = K(ia) - iK(a) \). Then one checks that \(\xi \) is a \(\mathbb{C}\)-antilinear homomorphism with \(K = -\text{Im}(\xi) \). In this way, we see that there is a surjective homomorphism

\[\text{Hom}_{\mathbb{C}-\text{anti}}(V, \mathbb{C}) \to \text{Pic}^0(X), \ \xi \mapsto \left[\lambda \mapsto e^{-2\pi i \text{Im}(\xi(\lambda))} \right]. \]
The kernel of this homomorphism is
\[\Lambda^* := \{ \xi \in V^* \mid \text{Im}(\xi(\lambda)) \in \mathbb{Z} \ \forall \lambda \in \Lambda \}. \]

It is easy to check that \(V^* \) is a \(g \)-dimensional vector space over \(\mathbb{C} \) and that \(\Lambda^* \) is a full lattice in \(V^* \). Therefore, \(\text{Pic}^0(X) \cong V^*/\Lambda^* \) is a complex torus.

The homomorphism \(\phi_L : V/\Lambda \to V^*/\Lambda^* \) can be described as follows. Each element of \(V^*/\Lambda^* \) corresponds to a character on \(\Lambda \) given by \(\lambda \mapsto e^{2\pi i E(a, \lambda)} \) for some \(a \in V \). This functional \(E(a, \cdot) \) “comes from” the \(\mathbb{C} \)-antilinear map \(H(a, \cdot) = E(ia, \cdot) + iE(a, \cdot) \) in \(V^* \). Therefore, define the homomorphism \(\tilde{\phi}_L : V \to V^* \) as \(a \mapsto H(a, \cdot) \). One can check that \(\tilde{\phi}_L(\Lambda) \leq \Lambda^* \) and that therefore, \(\tilde{\phi}_L \) induces a homomorphism on the quotients, which is in fact \(\phi_L : V/\Lambda \to V^*/\Lambda^* \). Now by the non-degeneracy of \(H \), \(\phi_L \) is actually an isomorphism. Therefore, the finiteness of the kernel of \(\phi_L \) implies that \(\tilde{\phi}_L(\Lambda) \leq \Lambda^* \) is a sublattice of finite index (in fact, the index is equal to \(\det(E) \)).

Now define
\[H^* : V^* \times V^* \to \mathbb{C}, \ H^*(\xi_1, \xi_2) = H(\tilde{\phi}_L^{-1}(\xi_1), \tilde{\phi}_L^{-1}(\xi_2)). \]

\(H^* \) is clearly a positive definite Hermitian form on \(V^* \), but \(\text{Im}(H^*) \) may not take integer values on \(\Lambda^* \). However, \(\text{Im}(H^*) \) certainly takes integer values on \(\tilde{\phi}_L(\Lambda) \), which, as previously stated, is a sublattice of finite index of \(\Lambda^* \), so we may multiply \(H^* \) by a suitable integer to get a non-degenerate Riemann form on \(V^* \).

In this way, we conclude that \(\text{Pic}^0(X) \) can be given the structure of a complex abelian variety \(X^\vee \), the dual abelian variety of \(X \). For each ample line bundle \(L \) on \(X \), the polarization \(\phi_L \) is an isogeny from \(X \) to \(X^\vee \).