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Abstract

In this talk I will present briefly some classical results about basic
moduli problems of elliptic curves over any base. In order to give a de-
cent view of the topic, many proofs will be just sketched; the main goal
is to highlight the importance of such problems in studying arithmetic
properties of elliptic curves with a certain generality, and to state the
main results of representability.
It will not be assumed any confidence with the formalism of moduli prob-
lems and I will recall also the definitions of basic objects such as Cartier
divisors and elliptic curves, which are well known and understood when
defined over a field but quite subtle when the base is arbitrary.
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1 Review of notations in the general setting
First of all, let us recall the definition of elliptic curves and Cartier divisors in
the most general setting.

Definition 1. Let S be a scheme. An elliptic curve over S is a one-dimensional
finite type group scheme E −→ S with geometrically connected fibers, such
that E is smooth and proper over S.

We can gather all elliptic curves in a suitable category. Let Ell1 be the
category of elliptic curves defined in the following way: the objects are elliptic
curves over an arbitrary base E −→ S (that we shall denote with E/S), and
the morphisms f : E ′/S ′ −→ E/S are cartesian commutative squares:

E ′

S ′

E

S

y

	

f

αE′

g

αE

(equivalently, an arrow in Ell is an isomorphism
(

f
αE′

)
: E ′ ∼=−→ E ×S S ′).

We present again the statement about the structure of the n−torsion of an
elliptic curve E over an arbitrary base scheme S, that in class we have seen
just for E defined over a field, in all its generality.

Theorem 2. Let E be an elliptic curve defined over an arbitrary scheme S.
Let n ≥ 1 an integer. The S−homomorphism "multiplication by n":

[n] : E
∆−→ E×n m−→ E

is a finite, locally free of rank n2 S−homomorphism. When S is defined over
Z[ 1

n
] (i.e. n is invertible in S) then the kernel E[n] is a finite étale scheme

over S, which is étale-locally on S isomorphic to the constant group scheme2

(Z/nZ)2
S.

Proof. The result is well known when S = Spec(C), because by transcendental
methods we know that Ean is (non-canonically) isomorphic to the quotient of
C by a full rank lattice Λ and thus E[n] is isomorphic to (1/n · Λ) /Λ which is
a free Z/nZ−module of rank 2. The aim of the proof is to reduce to that case.
Zariski locally on S, E is given by a smooth Weierstrass cubic in P2

S, so
we can assume without loss of generality that S is the open subset U (
Spec(Z[a1, . . . , a5]) where y2 + a1xy + a2y = x3 + a3x

2 + a4x + a5 is smooth.
1This is what Deligne calls modular stack in [1].
2For an abstract group G, the constant group scheme GS is just the disjoint union of #G

copies of the base scheme S, whose multiplication is given by the natural action of G.
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In this way, S is regular and then since the structural morphism E −→ S is
smooth is also regular.
Let us now concentrate on the multiplication by n morphism. If it is finite,
it is a finite morphism between regular schemes of the same dimension, so it
is automatically flat, hence we only need to prove the finiteness. It is proper,
because E is proper over S and [n] is an S−homomorphism. We are only left
to prove, geometric fiber by geometric fiber over S, that [n] has finite fibers:
let us suppose E is defined over an algebraically closed field k. Since any mor-
phism between proper smooth connected curves over k = k̄ is either finite flat
or constant, and since [n] is not constant (just take m coprime both with n and
char(k)), and then one sees immediately that [n] induces an automorphism on
the m2 points of order m of E(k)) it follows that has to be finite flat.
Finally, let us consider the case when n is invertible in the base S. Then over
S the morphism [n] is finite flat and fiber by fiber étale (on every point, the
tangent map at the origin induced by [n] is the ordinary multiplication by n
which is an isomorphism in our hypothesis), and thus it is étale. Now on S[ 1

n
],

being normal and connected, to show that E[n] is a twisted (Z/nZ)2
S it suffices

to do so at a single geometric point of S[ 1
n
]: just take a C−valued point of S

and the claim follows.

Corollary 3. Let S be an arbitrary scheme, E an elliptic curve over S, n ≥ 1
an integer. If E[n] is finite etale over S then n is invertible on S.

Proof. The map [n] is an f.p.p.f. E[n]−torsor. If E[n] is finite étale over S,
the map [n] is also finite étale and thus it induces an isomorphism over the Lie
algebra of E, where it is just the multiplication by n. It follows that n must
be invertible in OS.

This structure theorem will be important in defining the level n moduli
spaces in the following sections.

2 Moduli problems, fine and coarse moduli
spaces

Definition 4. A moduli problem for a certain category C is a contravariant
functor P : Cop −→ Set.
Given X an object of C, we shall say that an element α ∈ P(X) is a level P
structure on X.

We are mainly interested in the following problem: consider Sch the cat-
egory of all schemes, and consider the functor Mg,n sending a scheme S to
the class of smooth projective curves C of genus g and with a distinct set of
n S−points in C. For g = 1 = n this is just the moduli problem of elliptic
curves.
Is there a way to parametrize a family of elliptic curves via a universal scheme?
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Definition 5.

1. Given a moduli problem P : Cop −→ S, we say that P is representable if
there exists an object M (P) in C such that there exists a bijection of
sets, functorial in X, between P(X) and HomC (X, M (P)). This M (P)
is said to be a fine moduli space for P;

2. An object M(P) is said to be a coarse moduli space for P if there exists
a natural transformation of functors:

τ : P ·−→ HomC (−, M(P))

which is universal for every natural transformation from P to any other
representable functor.

The difference between these two definitions is that a fine moduli space
parametrizes not only the objects of a moduli problem, but even the mor-
phisms between them. Of course, a fine moduli space is also a coarse moduli
space.

So, let us focus again on the moduli problem M1,1. Classically (see for ex-
ample [4]) this moduli problem is provided of a coarse moduli scheme M(M1,1)
given by the j−affine line A1

j := Spec(Z[j]), where j is the normalized j−invariant3.
This makes A1

j the main candidate to be a fine moduli space for M1,1. How-
ever, it turns out that M1,1 cannot be representable.

First of all let us introduce some notation. From now on, we shall consider
moduli problems on elliptic curves, i.e. moduli problems on E ll. In the case P

is a representable moduli problem, we shall denote by E/M (P) the universal
elliptic curve over the universal base which represents P.

Definition 6.

1. A moduli problem P is rigid if every pair (X, α) where X is an object
of C and α a level P structure on it, has no non-trivial automorphisms.
This means that the group Aut (X) acts freely on P(X).

2. A moduli problem P is relatively representable if given any E/S ellip-
tic curve over a base S, the relative functor defined over Sch/S via the
assignation:

T ↦→ P(ET /T )
is representable by an S−scheme PE/S.

Remark 7.
3This is self-evident, since every elliptic curve is characterized up to isomorphism by its

j−invariant
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• If P is representable by E/M (P) then of course it is relatively rep-
resentable: every P/S relative moduli problem is represented by the
S−scheme IsomS×M (P)(π∗

1E, π∗
2E), where π1 : E ×E −→ E and π2 : E ×

E −→ E are the natural projections;

• Given S a representable moduli problem (say the representative is E/M (S))
and P a relatively representable moduli problem (say that P/S is repre-
sented by PE/S), the simultaneous moduli problem

S × P : E/S ↦→ S(E/S) × P(E/S)

is representable by the M (S)−scheme PE/M (S), which we will denote by
M (S, P).

Key Remark 8. It is a straightforward computation to show that if a moduli
problem of elliptic curves P is representable by a universal elliptic curve E over
a universal base M (P) then the base M (P) represents the functor Sch −→ Set
defined by the assignation:

S ↦→
{

(E/S, α) such that E is an elliptic curve over S
with given level P structure α

}

Proposition 9. A relatively representable moduli problem P which is also
affine over Ell (i.e. for all E/S the structure morphism P −→ S is affine) is
representable if and only if it is rigid. If moreover it is étale over Ell then it
is representable by a smooth affine curve over Z.

Proof.

⇐ A representable functor is also a sheaf for a suitable (subcanonical)
Grothendieck topology on Ell. The existence of non-trivial automor-
phism implies the impossibility of glueing the relative representatives
PE/S on the fibers, and thus it contradicts the sheaf condition of the
Hom functor;

⇒ (Sketch) One considers the simultaneous moduli problem S×P with S a
representable moduli problem over Z

[
1
2

]
, and the simultaneous moduli

problem S′ × P with S′ a representable moduli problem over Z
[

1
3

]
. This

yields two representatives of P over Z
[

1
2

]
and Z

[
1
3

]
, which by the rigidity

of P agree over Z
[

1
6

]
via a unique isomorphism, which makes it possible

to glue the two representatives. See [5, Scholie 4.7.0] for the full proof.

The latter claim can be found in [5, Corollary 4.7.1].

We have all the ingredients to show that A1
j cannot be a fine moduli space.

In fact, suppose M1,1 is representable by A1
j (which is affine), then it has to be

rigid, but it is easy to find automorphisms of elliptic curves fixing the S−point
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of the identity (just take the morphism x ↦→ −x).
But the last proposition tells us something more: the representability fails
exactly because of the abundance of automorphisms. (This always messes up
the representability of a moduli problem, see for example the functor Pic).
The idea is then to force morphisms to preserve additional structure, in order
to rigidify the moduli problem. The additional structure we will add is given
on the n−torsion part of E.

3 The four basic moduli problems for elliptic
curves

3.1 Γ(n)−structures
Definition 10. Let n ≥ 1 be an integer. Consider the functor

E/S ↦→ {φ : (Z/nZ)2 ∼=−→ E[n](S)} (1)

. This is called the naive level n structure moduli problem.

By theorem 2, we know that the moduli problem defined in Definition 10 is
(indeed) naive: we cannot hope to have this isomorphism if n is not invertible
on the base scheme S, because an isomorphism as abstract groups would induce
an isomorphism from the constant scheme (Z/nZ)2

S to the kernel E[n]; but the
former is always étale (trivially) while the second is not in general. In 1974,
Drinfeld ([2]) came up with the correct generalization which works for every n
and which agrees with the naive problem when n is invertible in S.

Definition 11. Let n ≥ 1 be an integer. A Γ(n)−structure (or a full level n
structure) on an elliptic curve E over S is a group homomorphism

Φ: (Z/nZ)2 −→ E[n](S)

which is a generator of E[n] as a Cartier divisor, i.e. there is an equality of
Cartier divisors

E[n] =
∑

a,b∈Z/nZ
[Φ(a, b)]

The S−points Φ(1, 0) and Φ(0, 1) are called a Drinfeld basis of E[n].

The moduli problem:

Ell −→ Set
E ↦→ {Γ(n) − structures on E} (2)

will be simply denoted with Γ(n).



The four basic moduli problems for elliptic curves 6

3.2 Γ1(n)−structures
Definition 12. Let n ≥ 1 be an integer. A Γ1(n)−structure on an elliptic
curve E over S (or a point of exact order n in E(S), or a (Z/nZ) −structure
on E[n]) is a group homomorphism:

Φ: Z/nZ −→ E[n](S)

such that the Cartier divisor ∑a[Φ(a)] is a subgroup scheme of E.

The moduli problem:

Ell −→ Set
E ↦→ {Γ1(n) − structures on E} (3)

will be simply denoted with Γ1(n).

3.3 Balanced Γ1(n)−structures
Definition 13. Let n ≥ 1 be an integer. A balanced Γ1(n)−structure on an
elliptic curve E over S is a diagram:

E E ′
φ

φ∨

where E ′ is an elliptic curve over S, φ is an n−isogeny and φ∨ is the dual
isogeny4, together with two generators P and P ′ of ker(φ)(S) and ker(φ∨)(S)
respectively.

Equivalently ([3, Exp. V, 4.1]), but less symmetrically, a balanced Γ1−structure
can be seen as a f.p.p.f. short exact sequence of group schemes over S:

0 −→ K −→ E −→ K ′ −→ 0

such that K and K ′ are both locally free of rank n, together with points
P ∈ K(S) and P ′ ∈ K(S ′) which generate K and K ′, respectively.

The moduli problem:

Ell −→ Set
E ↦→ {Balanced Γ1(n) − structures on E} (4)

will be simply denoted with Γ1(n).
4Recall that this means that φ ◦ φ∨ is the multiplication by n on E′, and φ∨ ◦ φ is the

multiplication by n on E.
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3.4 Γ0(n)−structures
Definition 14. Let n ≥ 1 be an integer. A Γ0(n)−structure on an elliptic
curve E over S is an n−isogeny φ : E −→ E ′ which is cyclic, i.e. f.p.p.f.
locally on S the kernel ker φ admits a generator.

The moduli problem:

Ell −→ Set
E ↦→ {Γ0(n) − structures on E} (5)

will be simply denoted with Γ0(n).

Remark 15.

• If n can be factorized as the product of two integers p and q, where p
and q are coprimes, then it is not so difficult to see that Γ(n)(E/S) ∼=
Γ(p)(E/S)×Γ(q)(E/S), and the analougous holds for all the other three
functors (3), (4), (5);

• The functors (2), (3), (4) and (5) have all a relative variant defined over
Sch/S. Let us fix a moduli problem P between these ones, and let us fix
an elliptic curve E/S. Then the relative functor P(E/S) is defined as:

T ↦→ P (ET /T )

• If E and E ′ are elliptic curves over a base S, and we are given an S−group
isomorphism E[n]

∼=−→ E ′[n], then we have an isomorphism of relative
functors P(E/S) ∼= P(E ′/S) for every P moduli problem among (2), (3),
(4) and (5), since they obviously depend only on the structure of the
kernel E[n].

We want now to study the representability of these four moduli problems.
By the Key Remark 8, we know that if P is any of the functors (2), (3),
(4) or (5) and it is representable by an elliptic curve E over a base M (P),
then the latter scheme M (P) represents the moduli problem of elliptic curves
with given level P structure. Thus, in the following part we will discuss the
representability of these four new problems.

4 Relative representability of level n moduli
problems

4.1 The situation in general
Theorem 16. Let n ≥ 1 be an integer, and fix an elliptic curve E over a base
S. Consider the three functors on Sch/S induced by Γ(n), Γ1(n) and Bal Γ1(n).
Each of these functors is represented by a finite S−scheme.
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Proof. This result follows from the following lemma which we do not prove.
Lemma 17. (See [5, Lemma 1.3.4 and Corollary 1.3.7]) Let E be a smooth
curve over S, let D and D′ be two effective Cartier divisors such that D′ is
proper over the base S. Then:

1. There exists a unique closed subscheme Z ⊆ S which is universal for the
condition D = D′, i.e. such that for all morphisms of schemes T −→ S,
then DT = D′

T if and only if T factors through Z. Z is given locally by
deg(D′) equations;

2. Suppose moreover E is an elliptic curve. Then there exists a unique
closed subscheme Z ⊆ S which is universal (in the sense above) for the
condition D is a subgroup of E. Z is given locally by 1+deg(D′)+deg(D)2

equations.

In fact, by the previous lemma, it follows that Γ(n) is represented by the
closed subscheme of HomS−Gp

(
(Z/nZ)2

S , E
)

over which the effective Cartier
divisor ∑ [Φ(a)] in E ×S HomS−Gp

(
(Z/nZ)2

S , E
)
, given by the universal mor-

phism Φ: (Z/nZ)2
S −→ E[n], satisfies D = E[n].

Γ1(n) is represented by the closed subscheme of HomS−Gp ((Z/nZ)S , E) ∼=
E[n] over which the effective Cartier divisor ∑ [Φ(a)] of deg = n in E ×S

HomS−Gp ((Z/nZ)S , E), given by the universal morphism Φ: (Z/nZ)S −→ E,
is a subgroup.
Finally, Bal Γ1(n) is represented by the scheme Z/nZ−Gen (K ′/ (Γ1(n)(E/S))),
where K ′ is the tautological quotient of E[n] by the subgroup K specified by a
Γ1(n)−structure on [n]. This scheme is finite over the relative moduli problem
Γ1(n)(E/S).

4.2 The situation when n is invertible
Theorem 18. Let n ≥ 1 be an integer, let S be a scheme defined over Z

[
1
n

]
,

and let E be an elliptic curve over S. Consider the four moduli problems on
Sch/S induced by Γ(n), Γ1(n), Bal Γ1(n) and Γ0(n). Then each one of these
functors is representable by a finite and étale S−scheme.

Proof. For the first three functors, the claim follows from the fact that we
already know they are finite. Moreover, by Theorem 2, E[n] is finite étale
over S and locally isomorphic to the constant group scheme (Z/nZ)2

S. So one
has only to prove that the representatives of these three functors are formally
étale: consider a thickening T0 of T (i.e., a closed subscheme locally given by a
nilpotent ideal), and suppose Φ0 : (Z/nZ)2

S −→ E(T0) is a full level n structure
(the other cases are analougous). Φ0 factors through the kernel E[n](T0) being
of degree n. Now E[n] is étale, and in particular formally étale; so there exists
a lift Φ̃0 of Φ0 to E[n](T ), and this is a full level n structure on E(T ). The
proof for Γ0(n) can be found in [5, Theorem 3.7.1].
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In particular, the four moduli problems we have presented here are repre-
sented respectively by:

• the constant group scheme

S × {Z/nZ − bases of (Z/nZ)2}

• the constant group scheme

S × {elements P of (Z/nZ)2 having exact order n}

• the constant group scheme

S ×

⎧⎪⎨⎪⎩
(K, P, P ′) such that K is a cyclic subgroup of (Z/nZ)2

of order n, P is a generator of K, P ′ is a generator
of the quotient modulo K of (Z/nZ)2

⎫⎪⎬⎪⎭
• the constant group scheme

S × {cyclic subgroups of order n in (Z/nZ)2}

Corollary 19. For n ≥ 3, the naive level n moduli problem is representable
by an affine curve over Z

[
1
n

]
, denoted by Y (n) and called the modular curve.

Proof. This follows straightforwardly from the previous result on relative rep-
resentability of naive level n structure and the Proposition 9, using the fact
that an automorphism φ of a connected elliptic curve E over a base S which
induces an identity on E[n] (n ≥ 2) can be only ±id (if n = 2) or the identity
itself (when n ≥ 3).

Remark 20. When S is the spectrum of the field of complex numbers C,
then the modular curve Y (n) is just the usual modular curve Y (n) given by
the quotient of the upper half plane H by the action of the subgroup Γ(n) of
SL2(Z) consisting of matrices: (

a b
c d

)
such that a ≡ d ≡ ±1 mod n and b ≡ c ≡ 0 mod n.

5 Regularity theorem
First of all, let us present an important theorem (which we do not prove).

Theorem 21. ([5, Theorem 5.1]) Let P be one of the moduli problems Γ(n),
Γ1(n), Bal Γ1(n), Γ0(n). Then P is relatively representable over Ell, is finite
and flat over Ell of constant rank ≥ 1, and it is regular of dimension 2. Each
is finite étale over Ell/Z[ 1

n ].
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Proof. (Sketch) This theorem is true over Z
[

1
n

]
, and by 15 we can reduce

ourselves to the case when n is the power of a single prime p. Then one proves
using the homogeneity principle ([1]) that the statement holds for all moduli
problems P such that, fixing a prime p ̸= 0:

1. P is relatively representable;

2. P ⊗ Z
[

1
n

]
is finite étale;

3. For all E, E ′ elliptic curves over S, for any isomorphisms φ between
p−divisible subgroups E[p∞]

∼=−→ E ′[p∞] then P(φ) is an isomorphism
between PE′/S and PE/S;

4. Let k an algebraically closed field over Fp. Let E0 be a supersingular
elliptic curve over k and consider E be the universal formal deformations
over the formal power series with coefficients in the Witt vector ring
W (k)JtK. Then P(E0/k) ∼= {∗} and PE/W (k)JtK is the spectrum of a regular
2−dimensional local ring.

Now we can state our main result on the regularity of our moduli problems
(we repeat some facts we have already seen to give the whole picture).

Theorem 22. Let n ≥ 1 be an integer. Consider S a representable moduli
problem which is étale over Ell, and let P be one of the moduli problems Γ(n),
Γ1(n), Bal Γ1(n), Γ0(n). Then:

1. M (S, P) is a regular 2−dimensional scheme, finite and flat over M (S);

2. M (S, P) ⊗ Z
[

1
n

]
is finite étale over M (S, P) ⊗ Z

[
1
n

]
;

3. M (S, P) is flat over Z;

4. M (S, P) is the normalization of M (S) in M (S, P) ⊗ Z
[

1
n

]
;

Proof. The first two statements were already stated (they are respectively the
statement of the previous theorem, and Theorem 18). The third follows from
the first together with the fact that S is flat over Z, and finally the fourth
follows from the first two because the normalization is the unique normal
scheme finite over S and it agrees, over Z

[
1
n

]
, with M (S, P).

6 Coverings of the moduli spaces
Theorem 23. Let n ≥ 1 be an integer, let E be an elliptic curve over S.
Consider two S−points P and Q in E[n](S) which are a Drinfeld n−basis of
E over S. Then:
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1. P is a Γ1(n)−structure on E over S;

2. Let K be the cyclic subgroup of E[n] generated by P . Given [Q] the image
of Q via the quotient morphism E −→ E ′ (where E ′ = E/K) then [Q] is
a Γ1(n)−structure on E ′. In particular, it generates K ′ := E[n]/K and
thus the triple (P, K, Q) is a balanced Γ1(n)−structure.

Proof. The theorem is obvious when n is invertible on S. The question is
f.p.p.f. local over the base, so we can assume ℓ is an odd prime which is
invertible on S and such that E admits a naive full level ℓ structure (whose
associated moduli problem S is representable, by Theorem 19). So we reduce
to the universal base: assume S is M (S, Γ(n)) and let E be the universal
elliptic curve defined over it with a universal Γ(n)−structure. In particular S
is flat over Z and affine (say S = Spec(A)).

1. Recall that Γ1(n) is representable bu a closed subscheme PE/S of E[n] =
Hom ((Z/nZ)S , E). Let I = (f1, . . . , fr) be the ideal defining PE/S:
then fi(P ) = 0 in A

[
1
n

]
and since A is flat over Z we have an inclusion

A ↪−→ A
[

1
n

]
which yields that fi(P ) = 0 also in A.

2. Since the scheme of generators of K ′ is a closed subscheme of K ′ ∼=
Hom ((Z/nZ)S , K ′) we can conclude as in 1..

Corollary 24. The previous theorem yields natural morphisms of moduli prob-
lems:

Γ(n) deg=n−→ Bal Γ1(n) deg=φ(n)−→ Γ1(n)
which are finite and flat of indicated degrees. In other words: for every repre-
sentable moduli problem S we have a natural diagram of morphisms, each of
which is flat of indicated degree:

M (S, Γ(n))

M (S, Bal Γ1(n))

M (S, Γ1(n))

M (S)

deg = n

deg = φ(n)

deg = n2 ·
∏

p|n

(
1 − 1

p2

)
deg = # GL2(Z/nZ)

Proof. The existence of these morphisms is precisely the statement of the pre-
vious theorem. To prove they are finite and flat of asserted degrees, we reduce
to the case when S is étale over Ell and M (S) is connected. In this case all the
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schemes involved are regular 2−dimensional schemes finite over M (S) (this
is the statement of Theorem 22), and thus the morphisms are necessarily all
finite and flat. To compute the degrees, since M (S) is flat over Z we may
invert n and then the result is a trivial consequence of Section 4.2 and of the
description we gave of the representatives of these moduli problems.
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