Moduli spaces of level n structures on elliptic curves

Emanuele Pavia

April 12, 2019

Abstract

In this talk I will present briefly some classical results about basic moduli problems of elliptic curves over any base. In order to give a decent view of the topic, many proofs will be just sketched; the main goal is to highlight the importance of such problems in studying arithmetic properties of elliptic curves with a certain generality, and to state the main results of representability.

It will not be assumed any confidence with the formalism of moduli problems and I will recall also the definitions of basic objects such as Cartier divisors and elliptic curves, which are well known and understood when defined over a field but quite subtle when the base is arbitrary.

Contents

1	Review of notations in the general setting	1
2	Moduli problems, fine and coarse moduli spaces	2
3	The four basic moduli problems for elliptic curves3.1 $\Gamma(n)$ -structures3.2 $\Gamma_1(n)$ -structures3.3Balanced $\Gamma_1(n)$ -structures3.4 $\Gamma_0(n)$ -structures	5 5 6 7
4	Relative representability of level n moduli problems4.1The situation in general4.2The situation when n is invertible	7 7 8
5	Regularity theorem	9
6	Coverings of the moduli spaces	10

1 Review of notations in the general setting

First of all, let us recall the definition of elliptic curves and Cartier divisors in the most general setting.

Definition 1. Let S be a scheme. An *elliptic curve* over S is a one-dimensional finite type group scheme $E \longrightarrow S$ with geometrically connected fibers, such that E is smooth and proper over S.

We can gather all elliptic curves in a suitable category. Let $\mathcal{E}ll^1$ be the category of elliptic curves defined in the following way: the objects are elliptic curves over an arbitrary base $E \longrightarrow S$ (that we shall denote with E/S), and the morphisms $f: E'/S' \longrightarrow E/S$ are cartesian commutative squares:

(equivalently, an arrow in $\mathcal{E}ll$ is an isomorphism $\binom{f}{\alpha_{E'}}: E' \xrightarrow{\cong} E \times_S S'$).

We present again the statement about the structure of the n-torsion of an elliptic curve E over an arbitrary base scheme S, that in class we have seen just for E defined over a field, in all its generality.

Theorem 2. Let E be an elliptic curve defined over an arbitrary scheme S. Let $n \ge 1$ an integer. The S-homomorphism "multiplication by n":

$$[n] \colon E \xrightarrow{\Delta} E^{\times n} \xrightarrow{m} E$$

is a finite, locally free of rank n^2 S-homomorphism. When S is defined over $\mathbb{Z}[\frac{1}{n}]$ (i.e. n is invertible in S) then the kernel E[n] is a finite étale scheme over S, which is étale-locally on S isomorphic to the constant group scheme² $(\mathbb{Z}/n\mathbb{Z})_{S}^{2}$.

Proof. The result is well known when $S = \operatorname{Spec}(\mathbb{C})$, because by transcendental methods we know that E^{an} is (non-canonically) isomorphic to the quotient of \mathbb{C} by a full rank lattice Λ and thus E[n] is isomorphic to $(1/n \cdot \Lambda) / \Lambda$ which is a free $\mathbb{Z}/n\mathbb{Z}$ -module of rank 2. The aim of the proof is to reduce to that case. Zariski locally on S, E is given by a smooth Weierstrass cubic in \mathbb{P}^2_S , so we can assume without loss of generality that S is the open subset $U \subsetneq$ $\operatorname{Spec}(\mathbb{Z}[a_1,\ldots,a_5])$ where $y^2 + a_1xy + a_2y = x^3 + a_3x^2 + a_4x + a_5$ is smooth.

¹This is what Deligne calls *modular stack* in [1].

²For an abstract group G, the constant group scheme G_S is just the disjoint union of #G copies of the base scheme S, whose multiplication is given by the natural action of G.

In this way, S is regular and then since the structural morphism $E \longrightarrow S$ is smooth is also regular.

Let us now concentrate on the multiplication by n morphism. If it is finite, it is a finite morphism between regular schemes of the same dimension, so it is automatically flat, hence we only need to prove the finiteness. It is proper, because E is proper over S and [n] is an S-homomorphism. We are only left to prove, geometric fiber by geometric fiber over S, that [n] has finite fibers: let us suppose E is defined over an algebraically closed field k. Since any morphism between proper smooth connected curves over $k = \bar{k}$ is either finite flat or constant, and since [n] is not constant (just take m coprime both with n and char(k)), and then one sees immediately that [n] induces an automorphism on the m^2 points of order m of E(k)) it follows that has to be finite flat.

Finally, let us consider the case when n is invertible in the base S. Then over S the morphism [n] is finite flat and fiber by fiber étale (on every point, the tangent map at the origin induced by [n] is the ordinary multiplication by n which is an isomorphism in our hypothesis), and thus it is étale. Now on $S[\frac{1}{n}]$, being normal and connected, to show that E[n] is a twisted $(\mathbb{Z}/n\mathbb{Z})_S^2$ it suffices to do so at a single geometric point of $S[\frac{1}{n}]$: just take a \mathbb{C} -valued point of S and the claim follows.

Corollary 3. Let S be an arbitrary scheme, E an elliptic curve over S, $n \ge 1$ an integer. If E[n] is finite etale over S then n is invertible on S.

Proof. The map [n] is an f.p.p.f. E[n]-torsor. If E[n] is finite étale over S, the map [n] is also finite étale and thus it induces an isomorphism over the Lie algebra of E, where it is just the multiplication by n. It follows that n must be invertible in \mathcal{O}_S .

This structure theorem will be important in defining the level n moduli spaces in the following sections.

2 Moduli problems, fine and coarse moduli spaces

Definition 4. A moduli problem for a certain category \mathcal{C} is a contravariant functor $\mathcal{P}: \mathcal{C}^{\mathrm{op}} \longrightarrow \mathrm{Set}$.

Given X an object of \mathcal{C} , we shall say that an element $\alpha \in \mathcal{P}(X)$ is a *level* \mathcal{P} structure on X.

We are mainly interested in the following problem: consider Sch the category of all schemes, and consider the functor $\mathcal{M}_{g,n}$ sending a scheme S to the class of smooth projective curves C of genus g and with a distinct set of n S-points in C. For g = 1 = n this is just the moduli problem of elliptic curves.

Is there a way to parametrize a family of elliptic curves via a universal scheme?

Definition 5.

- 1. Given a moduli problem $\mathfrak{P} \colon \mathfrak{C}^{\mathrm{op}} \longrightarrow \mathfrak{S}$, we say that \mathfrak{P} is *representable* if there exists an object $\mathscr{M}(\mathfrak{P})$ in \mathfrak{C} such that there exists a bijection of sets, functorial in X, between $\mathfrak{P}(X)$ and $\operatorname{Hom}_{\mathfrak{C}}(X, \mathscr{M}(\mathfrak{P}))$. This $\mathscr{M}(\mathfrak{P})$ is said to be a *fine moduli space* for \mathfrak{P} ;
- 2. An object $\mathcal{M}(\mathcal{P})$ is said to be a *coarse moduli space* for \mathcal{P} if there exists a natural transformation of functors:

$$\tau \colon \mathcal{P} \xrightarrow{\cdot} \operatorname{Hom}_{\mathfrak{C}}(-, \, \mathcal{M}(\mathcal{P}))$$

which is universal for every natural transformation from \mathcal{P} to any other representable functor.

The difference between these two definitions is that a fine moduli space parametrizes not only the objects of a moduli problem, but even the morphisms between them. Of course, a fine moduli space is also a coarse moduli space.

So, let us focus again on the moduli problem $\mathscr{M}_{1,1}$. Classically (see for example [4]) this moduli problem is provided of a coarse moduli scheme $\mathscr{M}(\mathscr{M}_{1,1})$ given by the *j*-affine line $\mathbb{A}_j^1 := \operatorname{Spec}(\mathbb{Z}[j])$, where *j* is the normalized *j*-invariant³. This makes \mathbb{A}_j^1 the main candidate to be a fine moduli space for $\mathscr{M}_{1,1}$. However, it turns out that $\mathscr{M}_{1,1}$ cannot be representable.

First of all let us introduce some notation. From now on, we shall consider moduli problems on elliptic curves, i.e. moduli problems on \mathcal{E} ll. In the case \mathcal{P} is a representable moduli problem, we shall denote by $\mathbb{E}/\mathcal{M}(\mathcal{P})$ the universal elliptic curve over the universal base which represents \mathcal{P} .

Definition 6.

- 1. A moduli problem \mathcal{P} is *rigid* if every pair (X, α) where X is an object of \mathcal{C} and α a level \mathcal{P} structure on it, has no non-trivial automorphisms. This means that the group Aut (X) acts freely on $\mathcal{P}(X)$.
- 2. A moduli problem \mathcal{P} is relatively representable if given any E/S elliptic curve over a base S, the relative functor defined over $\mathrm{Sch}_{/S}$ via the assignation:

$$T \mapsto \mathcal{P}(E_T/T)$$

is representable by an S-scheme $\mathcal{P}_{E/S}$.

Remark 7.

³This is self-evident, since every elliptic curve is characterized up to isomorphism by its j-invariant

- If \mathcal{P} is representable by $\mathbb{E}/\mathscr{M}(\mathcal{P})$ then of course it is relatively representable: every $\mathcal{P}_{/S}$ relative moduli problem is represented by the S-scheme $\underline{\mathrm{Isom}}_{S\times\mathscr{M}(\mathcal{P})}(\pi_1^*E, \pi_2^*\mathbb{E})$, where $\pi_1 \colon E \times \mathbb{E} \longrightarrow E$ and $\pi_2 \colon E \times \mathbb{E} \longrightarrow \mathbb{E}$ are the natural projections;
- Given S a representable moduli problem (say the representative is $\mathbb{E}/\mathcal{M}(S)$) and \mathcal{P} a relatively representable moduli problem (say that $\mathcal{P}_{/S}$ is represented by $\mathcal{P}_{E/S}$), the simultaneous moduli problem

$$\mathfrak{S} \times \mathfrak{P} \colon E/S \mapsto \mathfrak{S}(E/S) \times \mathfrak{P}(E/S)$$

is representable by the $\mathscr{M}(S)$ -scheme $\mathscr{P}_{\mathbb{E}/\mathscr{M}(S)}$, which we will denote by $\mathscr{M}(S, \mathcal{P})$.

Key Remark 8. It is a straightforward computation to show that if a moduli problem of elliptic curves \mathcal{P} is representable by a universal elliptic curve \mathbb{E} over a universal base $\mathscr{M}(\mathcal{P})$ then the base $\mathscr{M}(\mathcal{P})$ represents the functor $\mathrm{Sch} \longrightarrow \mathrm{Set}$ defined by the assignation:

$$S \mapsto \begin{cases} (E/S, \alpha) \text{ such that } E \text{ is an elliptic curve over } S \\ \text{with given level } \mathcal{P} \text{ structure } \alpha \end{cases}$$

Proposition 9. A relatively representable moduli problem \mathcal{P} which is also affine over \mathcal{E} ll (i.e. for all E/S the structure morphism $\mathcal{P} \longrightarrow S$ is affine) is representable if and only if it is rigid. If moreover it is étale over \mathcal{E} ll then it is representable by a smooth affine curve over \mathbb{Z} .

Proof.

- \Leftarrow A representable functor is also a sheaf for a suitable (subcanonical) Grothendieck topology on \mathcal{E} ll. The existence of non-trivial automorphism implies the impossibility of glueing the relative representatives $\mathcal{P}_{E/S}$ on the fibers, and thus it contradicts the sheaf condition of the Hom functor;
- ⇒ (Sketch) One considers the simultaneous moduli problem $S \times \mathcal{P}$ with S a representable moduli problem over $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$, and the simultaneous moduli problem $S' \times \mathcal{P}$ with S' a representable moduli problem over $\mathbb{Z}\begin{bmatrix}\frac{1}{3}\end{bmatrix}$. This yields two representatives of \mathcal{P} over $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ and $\mathbb{Z}\begin{bmatrix}\frac{1}{3}\end{bmatrix}$, which by the rigidity of \mathcal{P} agree over $\mathbb{Z}\begin{bmatrix}\frac{1}{6}\end{bmatrix}$ via a unique isomorphism, which makes it possible to glue the two representatives. See [5, Scholie 4.7.0] for the full proof.

The latter claim can be found in [5, Corollary 4.7.1].

We have all the ingredients to show that \mathbb{A}_{j}^{1} cannot be a fine moduli space. In fact, suppose $\mathscr{M}_{1,1}$ is representable by \mathbb{A}_{j}^{1} (which is affine), then it has to be rigid, but it is easy to find automorphisms of elliptic curves fixing the S-point of the identity (just take the morphism $x \mapsto -x$).

But the last proposition tells us something more: the representability fails exactly because of the abundance of automorphisms. (This *always* messes up the representability of a moduli problem, see for example the functor $\mathcal{P}ic$). The idea is then to force morphisms to preserve additional structure, in order to rigidify the moduli problem. The additional structure we will add is given on the n-torsion part of E.

3 The four basic moduli problems for elliptic curves

3.1 $\Gamma(n)$ -structures

Definition 10. Let $n \ge 1$ be an integer. Consider the functor

$$E/S \mapsto \{\phi \colon (\mathbb{Z}/n\mathbb{Z})^2 \xrightarrow{\cong} E[n](S)\}$$
 (1)

. This is called the *naive level n structure moduli problem*.

By theorem 2, we know that the moduli problem defined in Definition 10 is (indeed) naive: we cannot hope to have this isomorphism if n is not invertible on the base scheme S, because an isomorphism as abstract groups would induce an isomorphism from the constant scheme $(\mathbb{Z}/n\mathbb{Z})_S^2$ to the kernel E[n]; but the former is always étale (trivially) while the second is not in general. In 1974, Drinfeld ([2]) came up with the correct generalization which works for every n and which agrees with the naive problem when n is invertible in S.

Definition 11. Let $n \ge 1$ be an integer. A $\Gamma(n)$ -structure (or a full level n structure) on an elliptic curve E over S is a group homomorphism

$$\Phi \colon (\mathbb{Z}/n\mathbb{Z})^2 \longrightarrow E[n](S)$$

which is a generator of E[n] as a Cartier divisor, i.e. there is an equality of Cartier divisors

$$E[n] = \sum_{a, b \in \mathbb{Z}/n\mathbb{Z}} [\Phi(a, b)]$$

The S-points $\Phi(1, 0)$ and $\Phi(0, 1)$ are called a Drinfeld basis of E[n].

The moduli problem:

$$\mathcal{E}II \longrightarrow \mathcal{S}et$$
$$E \mapsto \{\Gamma(n) - \text{structures on } E\}$$
(2)

will be simply denoted with $\Gamma(n)$.

3.2 $\Gamma_1(n)$ -structures

Definition 12. Let $n \ge 1$ be an integer. A $\Gamma_1(n)$ -structure on an elliptic curve E over S (or a point of exact order n in E(S), or a $(\mathbb{Z}/n\mathbb{Z})$ -structure on E[n]) is a group homomorphism:

$$\Phi\colon \mathbb{Z}/n\mathbb{Z}\longrightarrow E[n](S)$$

such that the Cartier divisor $\sum_{a} [\Phi(a)]$ is a subgroup scheme of E.

The moduli problem:

$$\mathcal{E}ll \longrightarrow \text{Set}$$

$$E \mapsto \{\Gamma_1(n) - \text{structures on } E\}$$
(3)

will be simply denoted with $\Gamma_1(n)$.

3.3 Balanced $\Gamma_1(n)$ -structures

Definition 13. Let $n \ge 1$ be an integer. A balanced $\Gamma_1(n)$ -structure on an elliptic curve E over S is a diagram:

$$E \xrightarrow[\phi^{\vee}]{\phi^{\vee}} E'$$

where E' is an elliptic curve over S, ϕ is an *n*-isogeny and ϕ^{\vee} is the dual isogeny⁴, together with two generators P and P' of ker $(\phi)(S)$ and ker $(\phi^{\vee})(S)$ respectively.

Equivalently ([3, Exp. V, 4.1]), but less symmetrically, a balanced Γ_1 -structure can be seen as a f.p.p.f. short exact sequence of group schemes over S:

$$0 \longrightarrow K \longrightarrow E \longrightarrow K' \longrightarrow 0$$

such that K and K' are both locally free of rank n, together with points $P \in K(S)$ and $P' \in K(S')$ which generate K and K', respectively.

The moduli problem:

$$\mathcal{E}ll \longrightarrow \mathcal{S}et$$
$$E \mapsto \{\text{Balanced } \Gamma_1(n) - \text{structures on } E\}$$
(4)

will be simply denoted with $\Gamma_1(n)$.

⁴Recall that this means that $\phi \circ \phi^{\vee}$ is the multiplication by n on E', and $\phi^{\vee} \circ \phi$ is the multiplication by n on E.

3.4 $\Gamma_0(n)$ -structures

Definition 14. Let $n \ge 1$ be an integer. A $\Gamma_0(n)$ -structure on an elliptic curve E over S is an n-isogeny $\phi: E \longrightarrow E'$ which is cyclic, i.e. f.p.p.f. locally on S the kernel ker ϕ admits a generator.

The moduli problem:

$$\mathcal{E}ll \longrightarrow \mathcal{S}et$$
$$E \mapsto \{\Gamma_0(n) - \text{structures on } E\}$$
(5)

will be simply denoted with $\Gamma_0(n)$.

Remark 15.

- If n can be factorized as the product of two integers p and q, where p and q are coprimes, then it is not so difficult to see that $\Gamma(n)(E/S) \cong$ $\Gamma(p)(E/S) \times \Gamma(q)(E/S)$, and the analougous holds for all the other three functors (3), (4), (5);
- The functors (2), (3), (4) and (5) have all a relative variant defined over $\operatorname{Sch}_{/S}$. Let us fix a moduli problem \mathcal{P} between these ones, and let us fix an elliptic curve E/S. Then the relative functor $\mathcal{P}(E/S)$ is defined as:

$$T \mapsto \mathcal{P}(E_T/T)$$

If E and E' are elliptic curves over a base S, and we are given an S-group isomorphism E[n] → E'[n], then we have an isomorphism of relative functors P(E/S) ≅ P(E'/S) for every P moduli problem among (2), (3), (4) and (5), since they obviously depend only on the structure of the kernel E[n].

We want now to study the representability of these four moduli problems. By the Key Remark 8, we know that if \mathcal{P} is any of the functors (2), (3), (4) or (5) and it is representable by an elliptic curve \mathbb{E} over a base $\mathscr{M}(\mathcal{P})$, then the latter scheme $\mathscr{M}(\mathcal{P})$ represents the moduli problem of elliptic curves with given level \mathcal{P} structure. Thus, in the following part we will discuss the representability of these four new problems.

4 Relative representability of level *n* moduli problems

4.1 The situation in general

Theorem 16. Let $n \ge 1$ be an integer, and fix an elliptic curve E over a base S. Consider the three functors on $\operatorname{Sch}_{/S}$ induced by $\Gamma(n)$, $\Gamma_1(n)$ and $\operatorname{Bal}\Gamma_1(n)$. Each of these functors is represented by a finite S-scheme.

Proof. This result follows from the following lemma which we do not prove.

Lemma 17. (See [5, Lemma 1.3.4 and Corollary 1.3.7]) Let E be a smooth curve over S, let D and D' be two effective Cartier divisors such that D' is proper over the base S. Then:

- 1. There exists a unique closed subscheme $Z \subseteq S$ which is universal for the condition D = D', i.e. such that for all morphisms of schemes $T \longrightarrow S$, then $D_T = D'_T$ if and only if T factors through Z. Z is given locally by $\deg(D')$ equations;
- 2. Suppose moreover E is an elliptic curve. Then there exists a unique closed subscheme $Z \subseteq S$ which is universal (in the sense above) for the condition D is a subgroup of E. Z is given locally by $1 + \deg(D') + \deg(D)^2$ equations.

In fact, by the previous lemma, it follows that $\Gamma(n)$ is represented by the closed subscheme of $\underline{\operatorname{Hom}}_{S-\operatorname{Sp}}\left(\left(\mathbb{Z}/n\mathbb{Z}\right)_{S}^{2}, E\right)$ over which the effective Cartier divisor $\sum [\Phi(a)]$ in $E \times_{S} \underline{\operatorname{Hom}}_{S-\operatorname{Sp}}\left(\left(\mathbb{Z}/n\mathbb{Z}\right)_{S}^{2}, E\right)$, given by the universal morphism $\Phi: (\mathbb{Z}/n\mathbb{Z})_{S}^{2} \longrightarrow E[n]$, satisfies D = E[n].

 $\Gamma_1(n)$ is represented by the closed subscheme of $\underline{\operatorname{Hom}}_{S-\operatorname{Sp}}((\mathbb{Z}/n\mathbb{Z})_S, E) \cong E[n]$ over which the effective Cartier divisor $\sum [\Phi(a)]$ of deg = n in $E \times_S \underline{\operatorname{Hom}}_{S-\operatorname{Sp}}((\mathbb{Z}/n\mathbb{Z})_S, E)$, given by the universal morphism $\Phi: (\mathbb{Z}/n\mathbb{Z})_S \longrightarrow E$, is a subgroup.

Finally, Bal $\Gamma_1(n)$ is represented by the scheme $\mathbb{Z}/n\mathbb{Z}$ -Gen $(K'/(\Gamma_1(n)(E/S)))$, where K' is the tautological quotient of E[n] by the subgroup K specified by a $\Gamma_1(n)$ -structure on [n]. This scheme is finite over the relative moduli problem $\Gamma_1(n)(E/S)$.

4.2 The situation when *n* is invertible

Theorem 18. Let $n \ge 1$ be an integer, let S be a scheme defined over $\mathbb{Z}\left\lfloor \frac{1}{n} \right\rfloor$, and let E be an elliptic curve over S. Consider the four moduli problems on Sch_{S} induced by $\Gamma(n)$, $\Gamma_1(n)$, $\operatorname{Bal}\Gamma_1(n)$ and $\Gamma_0(n)$. Then each one of these functors is representable by a finite and étale S-scheme.

Proof. For the first three functors, the claim follows from the fact that we already know they are finite. Moreover, by Theorem 2, E[n] is finite étale over S and locally isomorphic to the constant group scheme $(\mathbb{Z}/n\mathbb{Z})_S^2$. So one has only to prove that the representatives of these three functors are formally étale: consider a thickening T_0 of T (i.e., a closed subscheme locally given by a nilpotent ideal), and suppose $\Phi_0: (\mathbb{Z}/n\mathbb{Z})_S^2 \longrightarrow E(T_0)$ is a full level n structure (the other cases are analougous). Φ_0 factors through the kernel $E[n](T_0)$ being of degree n. Now E[n] is étale, and in particular formally étale; so there exists a lift $\tilde{\Phi_0}$ of Φ_0 to E[n](T), and this is a full level n structure on E(T). The proof for $\Gamma_0(n)$ can be found in [5, Theorem 3.7.1].

In particular, the four moduli problems we have presented here are represented respectively by:

• the constant group scheme

$$S \times \{\mathbb{Z}/n\mathbb{Z} - \text{bases of } (\mathbb{Z}/n\mathbb{Z})^2\}$$

• the constant group scheme

 $S \times \{\text{elements } P \text{ of } (\mathbb{Z}/n\mathbb{Z})^2 \text{ having exact order } n \}$

• the constant group scheme

$$S \times \left\{ \begin{array}{cc} (K, P, P') \text{ such that } K \text{ is a cyclic subgroup of } (\mathbb{Z}/n\mathbb{Z})^2 \\ \text{of order } n, P \text{ is a generator of } K, P' \text{ is a generator} \\ \text{of the quotient modulo } K \text{ of } (\mathbb{Z}/n\mathbb{Z})^2 \end{array} \right\}$$

• the constant group scheme

 $S \times \{ \text{cyclic subgroups of order } n \text{ in } (\mathbb{Z}/n\mathbb{Z})^2 \}$

Corollary 19. For $n \ge 3$, the naive level n moduli problem is representable by an affine curve over $\mathbb{Z}\left[\frac{1}{n}\right]$, denoted by Y(n) and called the modular curve.

Proof. This follows straightforwardly from the previous result on relative representability of naive level n structure and the Proposition 9, using the fact that an automorphism ϕ of a connected elliptic curve E over a base S which induces an identity on E[n] $(n \ge 2)$ can be only $\pm id$ (if n = 2) or the identity itself (when $n \ge 3$).

Remark 20. When S is the spectrum of the field of complex numbers \mathbb{C} , then the modular curve Y(n) is just the usual modular curve Y(n) given by the quotient of the upper half plane \mathbb{H} by the action of the subgroup $\Gamma(n)$ of $SL_2(\mathbb{Z})$ consisting of matrices:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

such that $a \equiv d \equiv \pm 1 \mod n$ and $b \equiv c \equiv 0 \mod n$.

5 Regularity theorem

First of all, let us present an important theorem (which we do not prove).

Theorem 21. ([5, Theorem 5.1]) Let \mathcal{P} be one of the moduli problems $\Gamma(n)$, $\Gamma_1(n)$, $\operatorname{Bal}\Gamma_1(n)$, $\Gamma_0(n)$. Then \mathcal{P} is relatively representable over $\mathcal{E}ll$, is finite and flat over $\mathcal{E}ll$ of constant rank ≥ 1 , and it is regular of dimension 2. Each is finite étale over $\mathcal{E}ll_{\mathbb{Z}}[\frac{1}{n}]$.

Proof. (Sketch) This theorem is true over $\mathbb{Z}\left[\frac{1}{n}\right]$, and by 15 we can reduce ourselves to the case when n is the power of a single prime p. Then one proves using the homogeneity principle ([1]) that the statement holds for all moduli problems \mathcal{P} such that, fixing a prime $p \neq 0$:

- 1. \mathcal{P} is relatively representable;
- 2. $\mathcal{P} \otimes \mathbb{Z}\left[\frac{1}{n}\right]$ is finite étale;
- 3. For all E, E' elliptic curves over S, for any isomorphisms ϕ between p-divisible subgroups $E[p^{\infty}] \xrightarrow{\cong} E'[p^{\infty}]$ then $\mathcal{P}(\phi)$ is an isomorphism between $\mathcal{P}_{E'/S}$ and $\mathcal{P}_{E/S}$;
- 4. Let k an algebraically closed field over \mathbb{F}_p . Let E_0 be a supersingular elliptic curve over k and consider \mathbb{E} be the universal formal deformations over the formal power series with coefficients in the Witt vector ring W(k)[t]. Then $\mathcal{P}(E_0/k) \cong \{*\}$ and $\mathcal{P}_{\mathbb{E}/W(k)[t]}$ is the spectrum of a regular 2-dimensional local ring.

Now we can state our main result on the regularity of our moduli problems (we repeat some facts we have already seen to give the whole picture).

Theorem 22. Let $n \ge 1$ be an integer. Consider S a representable moduli problem which is étale over Ell, and let \mathcal{P} be one of the moduli problems $\Gamma(n)$, $\Gamma_1(n)$, $\operatorname{Bal}\Gamma_1(n)$, $\Gamma_0(n)$. Then:

- 1. $\mathcal{M}(S, \mathcal{P})$ is a regular 2-dimensional scheme, finite and flat over $\mathcal{M}(S)$;
- 2. $\mathscr{M}(\mathbb{S}, \mathbb{P}) \otimes \mathbb{Z}\begin{bmatrix} \frac{1}{n} \end{bmatrix}$ is finite étale over $\mathscr{M}(\mathbb{S}, \mathbb{P}) \otimes \mathbb{Z}\begin{bmatrix} \frac{1}{n} \end{bmatrix}$;
- 3. $\mathcal{M}(S, \mathcal{P})$ is flat over \mathbb{Z} ;
- 4. $\mathcal{M}(\mathbb{S}, \mathcal{P})$ is the normalization of $\mathcal{M}(\mathbb{S})$ in $\mathcal{M}(\mathbb{S}, \mathcal{P}) \otimes \mathbb{Z}\left[\frac{1}{n}\right]$;

Proof. The first two statements were already stated (they are respectively the statement of the previous theorem, and Theorem 18). The third follows from the first together with the fact that S is flat over \mathbb{Z} , and finally the fourth follows from the first two because the normalization is the unique normal scheme finite over \mathscr{S} and it agrees, over $\mathbb{Z}\left[\frac{1}{n}\right]$, with $\mathscr{M}(S, \mathcal{P})$.

6 Coverings of the moduli spaces

Theorem 23. Let $n \ge 1$ be an integer, let E be an elliptic curve over S. Consider two S-points P and Q in E[n](S) which are a Drinfeld n-basis of E over S. Then:

- 1. P is a $\Gamma_1(n)$ -structure on E over S;
- 2. Let K be the cyclic subgroup of E[n] generated by P. Given [Q] the image of Q via the quotient morphism $E \longrightarrow E'$ (where E' = E/K) then [Q] is a $\Gamma_1(n)$ -structure on E'. In particular, it generates K' := E[n]/K and thus the triple (P, K, Q) is a balanced $\Gamma_1(n)$ -structure.

Proof. The theorem is obvious when n is invertible on S. The question is f.p.p.f. local over the base, so we can assume ℓ is an odd prime which is invertible on S and such that E admits a naive full level ℓ structure (whose associated moduli problem S is representable, by Theorem 19). So we reduce to the universal base: assume S is $\mathscr{M}(S, \Gamma(n))$ and let \mathbb{E} be the universal elliptic curve defined over it with a universal $\Gamma(n)$ -structure. In particular Sis flat over \mathbb{Z} and affine (say $S = \operatorname{Spec}(A)$).

- 1. Recall that $\Gamma_1(n)$ is representable by a closed subscheme $\mathcal{P}_{\mathbb{E}/S}$ of $\mathbb{E}[n] = \underline{\operatorname{Hom}}((\mathbb{Z}/n\mathbb{Z})_S, \mathbb{E})$. Let $I = (f_1, \ldots, f_r)$ be the ideal defining $\mathcal{P}_{E/S}$: then $f_i(P) = 0$ in $A\left[\frac{1}{n}\right]$ and since A is flat over \mathbb{Z} we have an inclusion $A \longrightarrow A\left[\frac{1}{n}\right]$ which yields that $f_i(P) = 0$ also in A.
- 2. Since the scheme of generators of K' is a closed subscheme of $K' \cong \underline{\text{Hom}}((\mathbb{Z}/n\mathbb{Z})_S, K')$ we can conclude as in 1..

Corollary 24. The previous theorem yields natural morphisms of moduli problems:

$$\Gamma(n) \xrightarrow{\deg=n} \operatorname{Bal} \Gamma_1(n) \xrightarrow{\deg=\phi(n)} \Gamma_1(n)$$

which are finite and flat of indicated degrees. In other words: for every representable moduli problem S we have a natural diagram of morphisms, each of which is flat of indicated degree:

$$\mathcal{M}(\mathbb{S}, \Gamma(n))$$

$$\downarrow^{\deg = n}$$

$$\mathcal{M}(\mathbb{S}, \operatorname{Bal}\Gamma_{1}(n))$$

$$\downarrow^{\deg = \phi(n)}$$

$$\mathcal{M}(\mathbb{S}, \Gamma_{1}(n))$$

$$\downarrow^{\deg = n^{2}} \cdot \prod_{p \mid n} \left(1 - \frac{1}{p^{2}}\right)$$

$$\mathcal{M}(\mathbb{S})$$

Proof. The existence of these morphisms is precisely the statement of the previous theorem. To prove they are finite and flat of asserted degrees, we reduce to the case when S is étale over \mathcal{E} II and $\mathcal{M}(S)$ is connected. In this case all the

schemes involved are regular 2-dimensional schemes finite over $\mathscr{M}(S)$ (this is the statement of Theorem 22), and thus the morphisms are necessarily all finite and flat. To compute the degrees, since $\mathscr{M}(S)$ is flat over \mathbb{Z} we may invert n and then the result is a trivial consequence of Section 4.2 and of the description we gave of the representatives of these moduli problems. \Box

References

- P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. pages 143–316. Lecture Notes in Math., Vol. 349, 1973.
- [2] V. G. Drinfeld. Elliptic modules. Mat. Sb. (N.S.), 94(136):594–627, 656, 1974.
- [3] Alexander Grothendieck, Michèle Raynaud, Michel Demazure, Michael Artin, Jean-Louis Verdier, Pierre Deligne, Pierre Berthelot, Luc Illusie, and Nicholas Katz. Séminaire de Géométrie Algébrique du Bois-Marie. Springer-Verlag, Berlin, 1970-1973. Lecture Notes in Mathematics, Vols. 151, 152, 153, 224, 225, 269, 270, 288, 305, 340, 569, and 589.
- [4] Jun-ichi Igusa. Fibre systems of Jacobian varieties. III. Fibre systems of elliptic curves. Amer. J. Math., 81:453-476, 1959. ISSN 0002-9327. doi: 10.2307/2372751. URL https://doi.org/10.2307/2372751.
- Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985. ISBN 0-691-08349-5; 0-691-08352-5. doi: 10.1515/ 9781400881710. URL https://doi.org/10.1515/9781400881710.