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Abstract

The aim of these notes is to give a proof of the basepoint freness
part of the Fujita’s Conjecture for Complex Abelian Varieties, follow-
ing [Mum], §2. Here we give a short introduction to the general Fujita’s
Conjecture (see [Laz1], §11.2).

Consider a smooth projective curve C of genus g, and suppose that
D is a divisor of degree d on C. A classical (and elementary) theorem
states that if d ≥ 2g then the complete linear system |D| is basepoint
free, and if d ≥ 2g+1 thenD is very ample. It is natural to ask whether
this extends to smooth varieties of arbitrary dimension. Interestingly
enough, the shape that such a statement might take came into focus
only in the late 1980’s. The starting point is to rephrase the result for
curves without explicitly mentioning the genus g of C. Specifically,
note that

degD ≥ 2g ⇐⇒ D ≡ KC + L , (0.1)

where ≡ denotes the numerical equivalence, L is an ample divisor of
degree ≥ 2 and similarly degD ≥ 2g + 1 if and only if D admits the
same expression with degL ≥ 3. This suggests that bundles of large
degree on a curve generalize to adjoint divisors on a smooth projective
variety X of arbitrary dimension, i.e., divisors of the form KX + L
for a suitably positive divisor L on X. These considerations are made
precise in a conjecture due to Fujita.

Conjecture 0.1 (Fujita’s Conjecture). Let X be a smooth projective
variety of dimension n, and A an ample divisor on X. Then:

(i) If m ≥ n+ 1 then KX +mA is basepoint free.

(ii) If m ≥ n+ 2 then KX +mA is very ample.

As observed before, the conjecture is true if dim(X) = 1. It has
been veriefied also for dim(X) ≤ 5 in the case of global generation
(see [Rei], [EL], [Kaw], [Hel], [YZ]). There are also partial results for
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the case of very ampleness when X is a Calabi–Yau threefold (see
[GP]), and more generally when X has a nef canonical bundle (see
[MR]). For arbitrary dimension, there exist strong global generation
statements due to Angehrn and Siu (see [AS]) and Heier (see [Hei]),
whose bounds are nevertheless not linear in dim(X). While sharp for
hyperplane bundles on projective spaces, Fujita’s conjecture is very
far from the truth in general. One notable class for which part (ii)
of the Conjecture is true is that of Abelian Varieties: we know from
Lefschetz theorem that if D is an ample divisor on an Abelian Variety
X, then 3D is very ample (recall that the canonical divisor of an
abelian variety is trivial, since the tangent bundle is trivial). We want
to show in these notes that also part (i) of the conjecture is true for
Abelian Varieties with much smaller multiples than the one expected:
ifD is an ample divisor on an Abelian VarietyX, then 2D is base point
free. Furthermore we will also show that in this case the morphism
induced by the linear system |2D| is finite.

Another important example is given by K3 surfaces (see [SD]): if D
is an ample divisor on a K3 surface X, then 2D is basepoint free and
3D is very ample, so also in this case bounds are lower than expected
by the Conjecture.

1 Some basic definitions and results on Com-
plex Abelian Varieties

1.1 Divisors on Complex Abelian Varieties

First of all we recall the definition of Abelian Variety given at the beginning
of the course (where not specified we refer to [Yel]).

Definition 1.1. A group variety over a field k is an algebraic variety A over
k with the property that there is a group law on the set of points A(k) such
that group addition and inversion are given by morphisms m : A × A → A
and i : A→ A. An abelian variety is a group variety which is complete, i.e.,
for every algebraic variety X the projection prX : A×X → X is closed.

Remark 1.2. An abelian variety is smooth. Indeed, on any variety over k,
there is a k-point x0 at which the variety is smooth. If A is an abelian variety,
for each y ∈ A, the translation-by-y map ty : A→ A given by x 7→ y+x is an
invertible morphism from A to itself and therefore induces an isomorphism
on the tangent spaces (ty)∗ : Tx0X

∼−→ Ty+x0X. Since every a ∈ A is equal
to y + x0 for some y, the tangent spaces at all points of A are isomorphic to
Tx0A, and so A is smooth.
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From now on, when not specified, we work with Complex Abelian Vari-
eties, so we will take k = C. We now recall the definition of Cartier and Weil
divisors.

Definition 1.3. Let X be a connected complex manifold.

(i) The additive group Div(X) of "local function data" on X is defined as
follows. A "local function datum" is given by D = {{Ui}i∈I , {fi}i∈I},
where {Ui}i∈I is a finite open cover of X and, for each i ∈ I, fi is
a nonzero meromorphic function defined on the open subset Ui ⊂ X
such that for any i, j ∈ I such that Ui∩Uj 6= ∅, the quotient fi/fj (and
fj/fi) is holomorphic and nonvanishing on Ui ∩Uj. We define the sum
of two elements D1 = {{Ui}i∈I , {fi}i∈I} and D2 = {{Vj}j∈J , {gj}j∈J}
to be D1 +D2 := {{Ui ∩ Vj}(i,j)∈I×J , {figj}(i,j)∈I×J}.

(ii) A "local function datum" {{Ui}i∈I , {fi}i∈I} defined in this way is said
to be effective if each fi is holomorphic on Ui. It is said to be trivial if
each fi is both holomorphic and nonvanishing on Ui.

(iii) The group of Cartier divisors on X, denoted Div(X), is defined to be
the group equivalence classes of "local function data" on X modulo
trivial elements. If a divisor D is identified in this way with some
{{Ui}i∈I , {fi}i∈I} for some open cover {Ui}i∈I , then we say that D can
be represented by this data.

(iv) A divisor D ∈ Div(X) is said to be principal if it can be represented by
{{X}, {f}} for some nonzero meromorphic function f on X. In this
case we denote D by (f).

(v) Two Cartier divisors D,D′ ∈ Div(X) are linearly equivalent if D −D′
is principal. In this case we write D ∼ D′.

We observe that the Cartier divisor group is commutative and that the
trivial divisor, which we denote by 0, is the identity element. The notion
of effectiveness of Cartier divisors induces a partial ordering on the Cartier
divisor group. We write D ≥ D′ if D −D′ is effective.

Definition 1.4. Let X be a normal variety over a field k.

(i) A prime divisor on X is a closed subvariety of X of codimension 1. A
Weil divisor is an element of the free abelian group WDiv(X) generated
by prime divisors, i.e., D ∈ WDiv(X) is a formal finite sum D =∑
dZZ, where dZ ∈ Z and Z is a prime divisor.
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(ii) A Weil divisor D =
∑
dZZ is effective if every dZ is nonnegative.

(iii) Denote by K∗(X) the set of nonzero rational function on X. If f ∈
K∗(X), the Weil divisor asssociated to f is (f) :=

∑
ordZf · Z, where

the sum is over all the prime divisors of Y and ordZ(f) is the order of
f along Z (see [HAG], II, for more details).

(iv) A Weil Divisor D ∈ WDiv(X) is principal if D = (f) for some f ∈
K∗(X).

(v) Two Weil divisors D,D′ ∈ WDiv(X) are linearly equivalent if D −D′
is principal. In this case we write D ∼ D′.

Remark 1.5. The definition of divisor associated to a nonzero rational func-
tion f is well posed since ordZf 6= 0 for a finite number of prime divisors Z
(see [HAG], II, Lemma 6.1).

Remark 1.6. There exists an injective map, called cycle map, from Div(X)
to WDiv(X) for a normal variety X over a field k:

Div(X) ↪→WDiv(X) , {{Ui}i∈I , {fi}i∈I} 7→
∑

Z prime

ordZ(fi) · Z . (1.1)

Basically, Cartier divisors are Weil divisors locally defined by a single equa-
tion. In general it is not surjective, i.e., not every Weil divisor is Cartier.
It is possible to show that the surjectivity holds for smooth varieties, so by
Remark 1.2 for Abelian Varieties we can identify Cartier and Weil divisors
(see [HAG], II, Proposition 6.11).

There is a very straightforward way to define pullbacks of (Cartier) divi-
sors via surjective holomorphic maps f : X ′ → X between smooth varieties
X and X ′. Given any divisor D ∈ Div(X) represented by {{Ui}i∈I , {fi}i∈I},
we let f ∗(D) ∈ Div(X ′) be given by {{f−1(Ui)}i∈I , {fi ◦ f}i∈I}. In this way,
f : X ′ → X induces a homomorphism of groups f ∗ : Div(X)→ Div(X ′).

In many situations it is more convenient to work with classes of divisors
modulo linear equivalence. Hence we define the Picard group.

Definition 1.7. Let X be a smooth variety. Then the Picard group is the
quotient group

Pic(X) := Div(X)/ ∼ , (1.2)

where ∼ denotes the linear equivalence.
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It is possible to show that if X is a smooth variety then there is an
isomorphism between Pic(X) and the group of line bundles on X modulo
isomorphisms (see [HAG], II, Corollary 6.16).

We now recall some definitions given in [Yel], Chapter 2. From now on,
V is a complex vector space of dimension n, Λ is a full lattice,M(V ) is the
field of meromorphic functions on V , π : V → V/Λ = X is the projection
map to the complex torus X.

Definition 1.8. A function H : V × V → C is a Hermitian form on the
complex vector space V if it is C-linear in the first argument, and ifH(w, v) =
H(v, w) for all v, w ∈ V .

Remark 1.9. It is not hard to show that if H : V × V → C is a Hermitian
form, its imaginary part E : V × V → C is an R-linear alternating form,
i.e., E(w, v) = −E(v, w) for all v, w ∈ V , and E(iv, iw) = E(v, w) for all
v, w ∈ V . Conversely, any such E : V ×V → R determines a Hermitian form
H : V × V → C by H(v, w) = E(iv, w) + iE(v, w).

Definition 1.10. A theta function (with respect to the lattice Λ) is a func-
tion θ ∈M(V ) which satisfies the property that, for all v ∈ V and λ ∈ Λ,

θ(v + λ)/θ(v) = e2πi(L(v,λ)+J(λ)) (1.3)

for some map J : Λ → C and some map L : V × Λ → C which is C-linear
in the first argument. Given a Hermitian form H : V × V → C, we say
that such a function θ is a theta function for H if we have E(λ1, λ2) =
L(λ1, λ2)−L(λ2, λ1) for λ1, λ2 ∈ Λ and where E is the imaginary part of H.

Note that the set of all theta functions on V with respect to Λ forms
a group under multiplication, and in fact the map from this group to the
group of divisors Div(X) defined by sending a theta function θ to the divisor
D ∈ Div(X) such that (θ) = π∗D is a group homomorphism which we denote
by

div : {theta functions on V w.r.t. Λ} → Div(X) . (1.4)

Its kernel is the subgroup of trivial theta divisors, i.e., theta divisors θ which
are holomorphic and nonvanishing on V .

Proposition 1.11. For every divisor D ∈ Div(X), there is a unique Her-
mitian form H and a function θ ∈ M(V ) with (θ) = π∗D which is a theta
function for H.

In the proof of Proposition 1.11 it is shown that if θ is a theta function
for some Hermitian form H, the imaginary part E of H must be Z-valued
on Λ× Λ. This motivates the following crucial definition.
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Definition 1.12. A Riemann form associated to a complex torus X ∼= V/Λ
is a Hermitian form on V whose imaginary part is Z-valued on Λ× Λ.

Proposition 1.13. Let H : V × V → C be the Riemann form associated
to some divisor D ∈ Div(X) via Proposition 1.11. Then any theta function
θ ∈ M(V ) for H can be written as hθD, where h is a trivial theta function,
i.e., (h) = 0 ∈ Div(V ), and θD ∈M(V ) is a theta function satisfying

θD(v + λ)/θD(v) = e2πi( 1
2i
H(v,λ)+ 1

4i
H(λ,λ)+K(λ)) (1.5)

where K : Λ→ R satisfies the property that

K(λ1 + λ2)−K(λ1)−K(λ2) ≡ 1

2
E(λ1, λ2) mod Z , ∀λ1, λ2 ∈ Λ . (1.6)

Moreover, θD is unique up to a constant in C∗.

In particular, we have:

{theta functions w.r.t. Λ}/{trivial theta functions} ∼−→ Div(X)→ {Riemann forms w.r.t. Λ} .
(1.7)

1.2 Ample divisors on Complex Abelian Varieties

Let X be a Complex Abelian Variety. For any divisor D ∈ Div(X), we define
the Riemann–Roch space of D as:

L(D) := {f ∈M(X) | (f) +D ≥ 0} ∪ {0} . (1.8)

Note that L(D) is a vector space. For any divisor D ∈ Div(X), let θ0 be a
theta function whose divisor is π∗D. We define L(θ0) as the set of all holo-
morphic functions θ ∈M(V ) which have the same "translation functions" as
θ0 has, i.e., θ(v + λ)/θ(v) = θ0(v + λ)/θ0(v). By convention, 0 ∈ L(θ0). It is
clear that also L(θ0) is also a vector space. In fact, it is easy to see from the
definitions that we have an isomorphism L(θ0)

∼−→ L(D) given by θ 7→ θ/θ0.
We can now give the definition of ample divisor on a Complex Abelian

Variety.

Definition 1.14. Let X be a complex abelian variety over. A divisor D ∈
Div(X) is very ample if there exists a basis {θ0, . . . , θm} of L(θD) such that
the map Θ : X → PmC given by v 7→ (θ0(v) : · · · : θm(v)) is an embedding of
X into PmC , i.e., if we have the following:

(i) Θ is well-defined, i.e., we do not have θ0(v) = · · · = θm(v) = 0 for any
v ∈ V .

6



1 SOME BASIC DEFINITIONS AND RESULTS ON COMPLEX ABELIAN VARIETIES

(ii) Θ : X → PmC is an injection.

(iii) The induced maps on tangent spaces Θ∗ : TaX → TΘ(a)PmC are injec-
tions.

A divisor D ∈ Div(X) is ample if there is an integer n ≥ 1 such that nD is
very ample.

One usually finds the following definition of ampleness in Algebraic Ge-
ometry (see [Laz1], Definition 1.2.1).

Definition 1.15. Let X be a normal variety over a field k and L be an
invertible sheaf (or a line bundle) on X.

• We say that L is very ample if there exists an embedding ι : X ↪→ PN
such that ι∗OPN (1) ∼= L.

• We say that L is ample if for every coherent sheaf F on X there exists
an integer n0 > 0 such that F ⊗ L⊗n is globally generated for every
n ≥ n0.

Definition 1.14 and Definition 1.15 are equivalent by the following theorem
due to Cartan, Serre and Grothendieck.

Theorem 1.16. Let L be an invertible sheaf on a complete scheme X over
a field k. The following are equivalent:

(i) L is ample.

(ii) L⊗m is very ample for some m > 0.

(iii) Given F a coherent sheaf on X, there exists n1 such that H i(X,F ⊗
L⊗n) = 0 for every i > 0 and n ≥ n1 (this is known as Serre vanishing
theorem).

We can now state the following fundamental theorem on Complex Abelian
Varieties.

Theorem 1.17. Let D ∈ Div(X) be a divisor, and H : V × V → C be the
corresponding Riemann form. Then H is positive definite. Conversely, if H
is a positive definite Riemann form, then the divisor D ∈ Div(X) correspond-
ing to H is ample. More precisely, for any n ≥ 3, the divisor nD ∈ Div(X)
is very ample.

Hence we observe that part (ii) of the Fujita’s Conjecture holds for Com-
plex Abelian Varieties with lower bounds than expected
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1.3 Complete linear systems and base loci

Before introducing the notion of complete linear system, we briefly recall the
definition of global section of a divisor. Let X be a nonsingular projective
variety. We denote by OX(D) the line bundle induced by D in Pic(X). If
D = {{Ui}i∈I , {fi}i∈I} as Cartier divisor, a global section s ofD is a collection
s = {{Ui}i∈I , {si}i∈I} of holomorphic maps si : Ui → C such that

si(x) =
fi
fj

(x)sj(x) for every x ∈ Ui ∩ Uj . (1.9)

Observe that the notion of global section is well defined, i.e., it does not
depend on the choice of the element in the class defined by D in Pic(X):
indeed, if D = {{Ui}i∈I , {fi}i∈I} and D′ = {{Ui}i∈I , {f ′i}i∈I} are linearly
equivalent, i.e., D −D′ = {{X}, {f}} for some nonzero rational function f
(up to taking a refinement of the corresponding open covers it is possible to
suppose that D and D′ has the same open cover), so fi/f ′i = f |Ui , hence

si(x) =
fi
fj

(x)sj(x) =
f |Ui∩Uj · f ′i
f |Ui∩Uj · f ′j

(x)sj(x) =
f ′i
f ′j

(x)sj(x) . (1.10)

The space of global sections ofD is a C-vector space denoted by Γ(X,OX(D)),
and this space can be identified with cohomology in degree zero:

Γ(X,OX(D)) ∼= H0(X,OX(D)) . (1.11)

See [Ram], Chapter 4, §5, for more details.

Definition 1.18. A complete linear system on a nonsingular projective va-
riety X is defined as the set (maybe empty) of all effective divisors linearly
equivalent to some given divisor D. It is denoted by |D|.

Now, we have:

Theorem 1.19 (Theorem 6.2 in [Ram]). Let X be a nonsingular projective
variety and D ∈ Div(X). Then

L(D) ∼= H0(X,OX(D)) . (1.12)

Proof. Write D = {{Uα}, {fα}} as a Cartier divisor. Pick a section s ∈
H0(X,OX(D)), i.e., s = {{Uα}, {sα}} with sα ∈ O(Uα) and

sα(x) =
fα
fβ

(x)sβ(x) for every x ∈ Uα ∩ Uβ . (1.13)
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Consider the meromorphic function sα/fα ∈M(Uα). This extends to a global
meromorphic function F ∈M(X), since we have F |Uα = sα/fα = sβ/fβ over
the intersections. Let D =

∑
miVi as a Weil divisor, where mi = ordVi(fα)

for any α such that Vi and Uα intersect. Then

ordVi(F ) = ordVi(sα)− ordVi(fα) ≥ −mi , (1.14)

which means F ∈ L(D). Thus, we have a homomorphism

H0(X,OX(D))→ L(D) , s 7→ F =

(
sα
fα

)
. (1.15)

This is injective: if F ≡ 0, then sα ≡ 0 for all α, that is s ≡ 0. We show that
it is surjective. Given F ∈ L(D), let sα := fα · F |Uα . Then

ordVi(sα) = ordVi(fα) + ordVi(F ) ≥ mi −mi = 0 , (1.16)

which implies sα ∈ O(Uα). Since sα = fα
fβ
sβ, this shows that s = {{Uα}, {sα}}

is a global holomorphic section of OX(D), and by construction s 7→ F .

Remark 1.20. Let X be a nonsingular projective variety and consider D =
{{Uα}, {fα}} be a divisor on X. Assume we have a global section s =
{{Uα}, {sα}} in H0(X,OX(D)). We define

div(s) :=
∑

ordVi(sα) · Vi ∈WDiv(X) , (1.17)

where D =
∑
miVi as Weil divisor. By the proof of Theorem 1.19 we have

div(s) =
∑

(mi + ordVi(F )) · Vi = D + (F ) , (1.18)

where (F ) =
∑

ordVi(F ) · Vi is the divisor associated to the meromorphic
function F ∈ M(X) constructed as in the proof of Theorem 1.19. Since we
have mi + ordVi(F ) ≥ 0, we see that D′ := div(s) is an effective divisor.
Moreover, we have D′ −D = (F ), which means that D′ and D are linearly
equivalent. Thus, div(s) ∈ |D|, and we have a map

H0(X,OX(D))→ |D| , s 7→ div(s) . (1.19)

Notice that div(s) = div(λs) for any non-zero scalar. Moreover, it is an easy
exercise to show that any divisor in |D| arises as the divisor of some section
of D (see [HAG], II, Proposition 7.7 for more details). Therefore

|D| ∼= P(H0(X,OX(D))) . (1.20)
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Hence, if X is a Complex Abelian Variety, we have:

|D| ∼= P(L(D)) ∼= P(L(θD)) . (1.21)

Definition 1.21. Let X be a nonsingular projective variety and D a divisor
on X. The support of D, denoted by SuppD, is the union of the prime
divisors of D.

We can finally give the definition of base point of a complete linear system.

Definition 1.22. Let X be a nonsingular projective variety and consider
a divisor D ∈ Div(X). A point p ∈ X is a base point for the complete
linear system |D| if p ∈ SuppD for all D′ ∈ |D|, i.e., s(x) = 0 for every
s ∈ H0(X,OX(D)). The base locus of |D| is given by:

Bs |D| := {x ∈ X | s(x) = 0 for every s ∈ H0(X,OX(D))} . (1.22)

We say that |D| is basepoint free if Bs |D| = ∅

Hence, given a divisor D ∈ Div(X) for a nonsingular projective variety
X, it is possible to define the map induced by the linear system |D|, denoted
by φ|D|, as follows:

φ|D| : X 99K P(|D|∨) , x 7→ (s0(x) : · · · : sN(x)) , (1.23)

where {s0, . . . , sN} is a basis of H0(X,OX(D)). Clearly the map is not
defined in the base locus Bs |D| and it is a morphism in X − Bs |D|, so if
|D| is basepoint free the map φ|D| is a morphism. The map is well-defined in
X − Bs |D|: if D = {{Uα}, {fα}}, si = {{Uα}, {si,α}}, sj = {{Uα}, {sj,α}},
where X = ∪αUα, for x ∈ Uα ∩ Uβ the vectors (s0,α(x) : · · · : sN,α(x)) and
(s0,β(x) : · · · : sN,β(x)) differ by multiplication by fα/fβ(x) 6= 0, hence they
are the same point in the projective space.

If X is a Complex Abelian Variety, if {θ0, . . . , θN} is a basis of L(θD), the
map induced by the linear system |D| is:

φ|D| : X 99K P((L(θD))∨) , v 7→ (θ0(v) : · · · : θN(v)) , (1.24)

and the base locus of |D| is the set of points where all the θi vanish. Basically,
if X is a Complex Abelian Variety and D ∈ Div(X), we say that |D| is
basepoint free if (i) of Definition 1.14 holds.
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2 Some technical results
We present some results we need for the proof of the main theorem.

Lemma 2.1. Let f : Y → X be a finite morphism of complete schemes. If
L is an invertible ample sheaf (or line bundle) on X, then f ∗L is ample.

Proof. Let F be a coherent sheaf on Y . Since f is finite we have:

H i(Y,F ⊗ f ∗L⊗n) = H i(X, f∗F ⊗ L⊗n) = 0 for every i and n� 0 ,
(2.1)

where the first equality holds since f is finite, hence proper, and proper mor-
phisms preserve coherence, while the second is obtained using Serre vanishing
theorem.

We now recall a special case of the Projection formula (see [HAG], Ap-
pendix A, 1, A4).

Theorem 2.2 (Projection formula). Let f : X → X ′ be a proper surjective
morphism of nonsingular projective varieties over C. Let C ⊂ X be a curve
on X and H ∈ Div(X ′) be a divisor on X ′. Then:

C · f ∗H = f∗(C) ·H , (2.2)

where, if dim f(C) < dimC we set f∗(C) = 0, otherwise, if dim f(C) =
dimC we set:

f∗(C) := [M(C) :M(f(C))] · f(C) . (2.3)

Theorem 2.3. Suppose that f : X → Y is a projective morphism, and F
is a coherent sheaf on X, flat over Y . Suppose that Y is locally Noetherian.
Then

∑
(−1)ihi(Xy,F|y) is a locally constant function of y ∈ Y , i.e., the

Euler characteristic of F is constant in the fibers.

Proof. See [Vak], Theorem 1.1.

Corollary 2.4. An invertible sheaf L on a flat projective family of connected
nonsingular curves has locally constant degree on the fibers.

Proof. An invertible sheaf L on a flat family of curves is always flat, since
it is locally isomorphic to the structure sheaf. Hence by Theorem 2.3 we
have that χ(Ly) is constant. From the Riemann–Roch formula χ(Ly) =
deg(Ly)−g(Xy)+1. Using the local constancy of χ(Ly) the result follows.
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Theorem 2.5 (Seesaw Theorem). Let X and Y be normal varieties. Suppose
that X is complete. Let L and H be two line bundles on X × Y . The set
{y ∈ Y s.t. L|X×{y} ∼= M |X×{y}} is Zariski-closed. Moreover, if for all closed
y ∈ Y we have Ly ∼= My, i.e., L|X×{y} ∼= M|X×{y}, then there exists a line
bundle N on Y such that L ∼= M ⊗ p∗N , where p = prY : X × Y → Y is the
projection onto Y . If in addition we have Lx = Mx for some x ∈ X, then
L ∼= M .

Proof. We do not prove that {y ∈ Y s.t. L|X×{y} ∼= M |X×{y}} is Zariski-
closed (see [Mum], Corollary 6). Now, since Ly ⊗M−1

y is the trivial bundle
and Xy is complete, the space of sections H0(Xy, Ly⊗M−1

y ) is isomorphic to
k(y), the residue field of y. This implies that p∗(L ⊗M−1) is locally free of
rank one, hence a line bundle (see [HAG], III, §12). We shall prove that the
natural map

α : p∗p∗(L⊗M−1)→ L⊗M−1 (2.4)

is an isomorphism. If we restrict to a fibre we find the map

OXy ⊗ Γ(Xy,OXy)→ OXy (2.5)

which is an isomorphism. By Nakayama’s lemma, this implies that α is
surjective and by comparing ranks we conclude that it is an isomorphism,
hence L ∼= M⊗p∗N . Over {x}×Y this gives Lx ∼= Mx⊗(pr∗YN)x. Therefore
(pr∗YN)x is trivial, and this implies that N is trivial.

Theorem 2.6 (Theorem of the cube). Let X, Y be complete varieties, Z
any variety and x0, y0 and z0 base points on X, Y and Z respectively. If L
is any line bundle on X ×Y ×Z whose restrictions to each of {x0}×Y ×Z,
X × {y0} × Z and X × Y × {z0} are trivial, then L is trivial.

Proof. We follow [Ort], Theorem 12, and we give a proof over C using the
exponential sequence, at least in the case Z is also complete. For simplicity,
assume none of X, Y and Z have torsion in their cohomology. Then the
Künneth theorem tells us that the natural map

H∗(X,Z)⊗H∗(Y,Z)⊗H∗(Z,Z)
p∗1∪p∗2∪p∗3−−−−−→ H∗(X × Y × Z,Z) (2.6)

is an isomorphism, where pi is the projection to the i-th factor (we let pij be
the projection to the i-th and j-th factors). Let ιi be the inclusion of the i-th
factor and ιij the inclusion of the i-th and j-th factors using the basepoints.
Concretely,

ι1 : X × y0 × z0 → X × Y × Z , ι12 : X × Y × z0 → X × Y × Z . (2.7)

12
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If you think about the isomorphism (2.6) in degree 2, for any class α ∈
H2(X × Y × Z,Z) we have

α = α12 + α13 + α23 − α1 − α2 − α3 , (2.8)

where αij (respectively αi) is α inserted in the i-th and j-th slots (respectively
p∗iα inserted in the i-th slot) via the Künneth formula, so α12 = ι∗12α ⊗ 1,
α1 = ι∗1α ⊗ 1 ⊗ 1. In particular, this means that if ι∗ijα = 0 for all i, j, then
α = 0.

The long exact sequence associated to the exponential sequence

0→ Z→ O → O∗ → 0 (2.9)

gives us an exact sequence

H1(X × Y × Z,O)
exp−−→ H1(X × Y × Z,O∗) c1−→ H2(X × Y × Z,Z) . (2.10)

Given a line bundle L on X × Y ×Z thought of as an element of the middle
group, ι∗ijc1(L) = c1(ι∗ijL) = 0 for all i, j, so c1(L) = 0 and L = exp(A) for
some A ∈ H1(X × Y × Z,O). But

H1(X,O)⊕H1(Y,O)⊕H1(Z,O)
p∗1+p∗2+p∗3−−−−−−→ H1(X × Y × Z,O) (2.11)

is an isomorphism, and the hypothesis imply that ι∗i exp(A) = exp(ι∗iA) = 0
for each i. Thus,

L = exp

(∑
i

ι∗iA

)
= 0 , (2.12)

as we wanted.

Remark 2.7. Note that the proof of Theorem 2.6 that we have given is
good if X, Y and Z are Complex Abelian Varieties, since these are complete
varieties by definition and their cohomology groups have no torsion (see [Fil],
Theorem 3.3).

Corollary 2.8. Let X be any variety, Y an Abelian Variety, and f, g, h :
X → Y morphisms. Then for all line bundles L ∈ Pic(Y ) we have:

(f+g+h)∗L ∼= (f+g)∗L ⊗ (f+h)∗L ⊗ (g+h)∗L ⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1 .
(2.13)

Proof. Let pi : Y × Y × Y → Y be the projection onto the i-th factor, put
mij := pi + pj : Y × Y × Y → Y and m := p1 + p2 + p3 : Y × Y × Y → Y .

13
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Consider the line bundle

M := m∗L ⊗ m∗12L
−1 ⊗ m∗13L

−1 ⊗ m∗23L
−1 ⊗ p∗1L ⊗ p∗2L ⊗ p∗3L (2.14)

on Y ×Y ×Y . If q : Y ×Y → Y ×Y ×Y is the map given by q(y, y′) = (0, y, y′),
we have

q∗M = n∗L ⊗ q∗1L
−1 ⊗ q∗2L

−1 ⊗ n∗L−1 ⊗ 0∗L ⊗ q∗1L ⊗ q∗2L (2.15)

where 0, q1, q2, n : Y × Y → Y are respectively the 0 map, the projections,
and the addition. Therefore q∗M is trivial. By symmetry, M is trivial on
Y × {0} × Y and Y × Y × {0} too. By Theorem 2.6, M must be trivial on
Y × Y × Y . Pulling back M by the map (f, g, h) : X → Y × Y × Y , the
result follows.
Corollary 2.9 (Theorem of the square). Let X be a Complex Abelian Vari-
ety. Then for all line bundles L and x, y ∈ X we have:

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL . (2.16)

Therefore if we define the map

φL(x) := isom. class of t∗xL⊗ L−1 in Pic(X) , (2.17)

then φL is a homomorphism from X to Pic(X).
Proof. Apply Corollary 2.8 with X = Y , f and g constant maps with images
x, y respectively, and h = identity.

In terms of divisors, Corollary 2.9 asserts that for any divisor D on X,
and x, y ∈ X,

t∗x+yD +D ∼ t∗xD + t∗yD , (2.18)
where ∼ denotes the linear equivalence. From now on, we will always keep
the notation φL for this very important map. Note that:

1. φL1⊗L2 = φL1 +φL2 , where + stands for the group law induced by ⊗ in
Pic(X).

2. φt∗xL = φL.
Definition 2.10. Let L be a line bundle on a Complex Abelian Variety X.
Then we set:

K(L) := Ker(φL) = {x ∈ X | t∗xL ∼= L} . (2.19)
Proposition 2.11. Let L be a line bundle on a Complex Abelian Variety X.
Then K(L) is a Zariski-closed subgroup of X.
Proof. Apply the Seesaw Theorem to the line bundle m∗L⊗p∗2L−1 on X×X,
where m : X × X → X denotes the addition. It follows that the set of
x ∈ X such that m∗L ⊗ p∗2L−1 is trivial on {x} × X is Zariski closed. But
m∗L⊗ p∗2L−1|{x}×X ∼= t∗xL⊗ L−1, so this set is K(L).

14
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3 Basepoint freeness theorem
We now state the main theorem of the presentation.

Theorem 3.1. Let X be a Complex Abelian Variety and let D be an effec-
tive divisor on X and L = L(D) the associated line bundle. The following
conditions are equivalent:

(i) The complete linear system |2D| has no base points, and defines a finite
morphism φ|2D| : X → PN .

(ii) L is ample on X, i.e., D is ample on X.

(iii) K(L) is finite.

(iv) The subgroup H := {x ∈ X | t∗x(D) = D} of X is finite (equality of
divisors, not divisor classes).

Remark 3.2. The result is in fact true for abelian varieties over an alge-
braically closed field k: the only difference in the proof is that the theorem
of the cube has a more complicated proof than the one given before.

Proof. ”(i) =⇒ (ii)” It is a consequence of Lemma 2.1, since by assumption
φ|2D| is finite and clearly OPN (1) is ample.

”(ii) =⇒ (iii)” If K(L) is not finite, let Y be the connected component
of K(L) containing 0, which obviously lies on K(L). We show that Y is
an abelian variety of positive dimension. Indeed, it is a group variety since
X is a group variety by Definition 1.1, and it is closed by Proposition 2.11.
Furthermore, for every variety Z the projection Y × Z → Z is closed since
it is the composition of the closed maps Y × Z ↪→ X × Z and X × Z → Z,
where the first map is the closed immersion of Y ×Z in X×Z and the second
map is the projection of X×Z on Z, and the latter is a closed map since X is
complete. Thus Y is complete, hence it is an abelian variety by Definition 1.1.
Now, by assumption L is ample on X, i.e., for n� 0 the map induced by the
linear system |nL| is an embedding, hence φ|nL||Y ≡ φ|nLY | is an embedding
of Y into some projective space, where LY is the restriction of L to Y . That
means that LY is ample on Y. Moreover, since Y ⊆ K(L) = ker(φL), we have
t∗y(LY ) ∼= LY for all y ∈ Y . Let mY : Y × Y → Y be the addition on Y and
pi : Y × Y → Y be the projections for i = 1, 2.

Claim 3.3. The line bundle m∗Y (LY )⊗p∗1(L−1
Y )⊗p∗2(L−1

Y ) is trivial on Y ×Y .

Proof Claim 3.3. We apply Seesaw Theorem. Consider the line bundlem∗YLY⊗
p∗2L

−1
Y on Y × Y . Clearly for every y ∈ Y we have:

(m∗YLY ⊗ p∗2L−1
Y ){y}×Y ∼= (p∗1LY ){y}×Y (3.1)

15



3 BASEPOINT FREENESS THEOREM

since the first line bundle is isomorphic to t∗yLY ⊗ L−1
Y , which is isomorphic

by definition of Y to LY ⊗ L−1
Y , hence trivial, and the second line bundle is

obviously trivial. Hence by the Seesaw Theorem we get for some line bundle
M on Y:

m∗YLY ⊗ p∗2L−1
Y
∼= p∗1M . (3.2)

To conclude we want to show that M = LY . Observe that:

(m∗YLY ⊗ p∗2L−1
Y )|Y×{y} ∼= (p∗1LY )|Y×{y} (3.3)

since both are isomorphic to LY , hence by the last part of Seesaw Theorem
we have M = LY .

Now from m∗YLY ⊗ p∗2L−1
Y
∼= p∗1LY we have that m∗YLY ⊗ p∗1L−1

Y ⊗ p∗2L
−1
Y

is trivial on Y × Y .

Consider now the composition

Y
g:=(id,−id)−−−−−−→ Y × Y mY−−→ Y . (3.4)

Clearly, also m∗YL
−1
Y ⊗ p∗1LY ⊗ p∗2LY is trivial, hence

g∗OY×Y ∼= g∗(m∗YL
−1
Y ⊗ p∗1LY ⊗ p∗2LY )

∼= (mY ◦ g)∗L−1
Y ⊗ (p1 ◦ g)∗LY ⊗ (p2 ◦ g)∗LY

∼= (−id)∗LY ⊗ LY ,

(3.5)

and this is trivial on Y , being g∗ a group homomorphism. But we have
seen that LY is ample on Y , and since (−id) is an automorphism of Y ,
LY ⊗ (−id)∗(LY ) ∼= g∗OY×Y is ample. So LY ⊗ (−id)∗(LY ) is both ample
and trivial, and this is a contradiction since dimY > 0.

”(iii) =⇒ (iv)” It is trivial since K(L) ⊃ H.
”(iv) =⇒ (i)” The linear system |2D| contains the divisors t∗x(D) +

t∗−x(D) by (2.18). Since we have observed in Remark 1.2 that the translation
map is bijective, for any u ∈ X we can find an x ∈ X such that u ± x 6∈
SuppD, and this means that u 6∈ Supp (t∗x(D) + t∗−x(D)). Thus the linear
system |2D| has no base points, and defines a morphism φ|2D| : X → PN .
We now show that φ|2D| is a finite morphism. Suppose that it is not finite:
thus we can find an irreducible curve C such that φ|2D|(C) = p is a point in
PN . It follows that for all E ∈ |2D|, either E contains C or is disjoint from
C. Indeed, suppose that C is not contained in E. Recall that φ∗|2D|H = 2D,
where H is the divisor defined by a hyperplane in PN . Then we have:

E · C = 2D · C = φ∗|2D|H · C = H · φ|2D|∗C , (3.6)

16
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where the last equality comes form the projection formula (PF), and H ·
φ|2D|∗(C) = 0 since φ|2D|(C) = p. In particular, for almost all x ∈ X, we
have that C and t∗x(D)+t∗−x(D) are disjoint. Obviously it is not possible that
for every E ∈ |2D| the curve C is contained in E, since this would imply
that C ⊂ Bs |2D|, but Bs |2D| = ∅. Moreover, Supp(2D) ∩ C = ∅ since
2D = φ∗|2D|H and φ|2D|(C) is a point. Now note the following general fact.

Lemma 3.4. Let X be a Complex Abelian Variety. If C is a curve on X and
E is an irreducible divisor on X such that C ∩ E = ∅, then E is invariant
under translation by x1 − x2, for all xi ∈ C.

Proof Lemma 3.4. If L is the line bundle given by the class of E in Pic(X),
then L is trivial on C since C and E are disjoint. We want to show that t∗xL,
restricted to C, has degree 0 for all x ∈ X. Indeed, up to normalization we
can suppose that C is nonsingular. Let mC : C × X → X be the addition
and consider the line bundle m∗CL on C ×X. So for any x ∈ X:

χ((t∗xL)|C) = χ((m∗CL)|C×{x}) = χ((m∗CL)|C×{0}) = χ(OC) , (3.7)

since by Theorem 2.3 and Corollary 2.4 the Euler characteristic is constant
in the fibers of mC . Hence deg((t∗xL)|C) = deg(OC) = 0. But then using the
projection formula we have that tx(C) and E can never intersect in a non-
empty finite set of points, since this would imply that t∗x(L)|C had positive
degree. Thus for all x ∈ X, either tx(C) and E are disjoint, or tx(C) ⊂ E. Let
x1, x2 ∈ C, y ∈ E. Then ty−x2(C) and E meet at y. Therefore ty−x2(C) ⊂ E,
hence y − x2 + x1 ∈ E. This proves the lemma.

If D =
∑
niDi, with Di irreducible, then by Lemma 3.4 each Di is

invariant under translation by all points x1 − x2, xi ∈ C. This contradicts
(iv), hence we have proved Theorem 3.1.

Example 3.5. Let X be a Riemann surface of genus 1, i.e., an elliptic curve
over C. Consider D a divisor on X with degD > 0. Since g = 1 and
l(K − D) = 0, being deg(K − D) = degK − degD = 2g − 2 − degD < 0,
Riemann–Roch implies

l(D) = degD . (3.8)

If we denote by D(p) the coefficient of a point p ∈ X in D =
∑
D(pi)pi, for

every f ∈ L(D) and for every point p ∈ X we have D(p) + ordp(f) ≥ 0. So
by Theorem 1.19 we have that p is a basepoint of L(D) = |D| if and only if
for every f ∈ L(D) one has D(p) + ordp(f) ≥ 1. Since f is already in L(D),
this condition on f exactly says that f ∈ L(D− p). Recall also the following
result.
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Lemma 3.6 (Lemma 3.15 in [Mir], Ch.V). Let X be a Riemann surface, let
D be a divisor on X, and let p be a point of X. Then either L(D−p) = L(D)
or L(D − p) has codimension one in L(D).

Proof. Choose a local coordinate z centered at p, and let n = −D(p). Then
every function f in L(D) has a Laurent series at p of the form czn+ higher
terms. Define a map α : L(D)→ C by sending f to the coefficient of the zn
term in its Laurent series. Clearly α is a linear map and the kernel of α is
exactly L(D − p). If α is the identically zero map, then L(D − p) = L(D).
Otherwise α is onto, and so L(D − p) has codimension one in L(D).

Hence we have the following proposition.

Proposition 3.7 (Proposition 4.9 in [Mir], Ch.V). Let D be a divisor on
a compact Riemann surface X. Then a point p ∈ X is a basepoint of the
complete linear system |D| if and only if dimL(D−p) = dimL(D). Hence |D|
is basepoint free if and only if for every point p ∈ X we have dimL(D−p) =
dimL(D)− 1.

So take a point p ∈ X, where X is a genus 1 Riemann surface. From
3.8 we have l(p) = 1, and obviously C ∼= {constant functions onX} ⊆ L(p),
hence L(p) ∼= C. Now, L(p− p) = L(0) ∼= C (here 0 is not the distinguished
point of the definition of elliptic curve) hence Proposition 3.7 implies that p
is a basepoint for |p|. Take now q 6= p in X. Clearly L(p − q) ⊂ L(p). If
L(p− q) = L(p), then L(p− q) ∼= C, but if f is a nonzero constant function
it is not true that (f) + p− q ≥ 0, so f 6∈ L(p− q), hence L(p− q) = {0} and
l(p − q) = l(p) − 1. By Proposition 3.7 we have that every q 6= p is outside
Bs |p|.

Consider now the divisor 2p. By (3.8) we have

l(2p) = 2 , (3.9)

hence L(p) is a C-vector space with basis {1, f}, where f is a meromorphic
function with a pole of order 2 at p. A point q is a basepoint for the complete
linear system |2p| if and only if L(2p− q) = L(2p), but by (3.8) we have that
l(2p) = 2 and l(2p − q) = 1 for every q ∈ X, hence by Proposition 3.7
we conclude that |2p| is basepoint free. The divisor 2p is not very ample,
otherwise we would have an injective map X ↪→ P1, but the only possible
images of [1 : f ] are constant or the entire Riemann sphere, since X is
compact and connected. But X has nontrivial fundamental group, so this is
a contradiction, hence 2p is not very ample. Another way to see this is using
the following result.
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Proposition 3.8 (Proposition 4.20 in [Mir], Ch.V). Let X be a compact
Riemann surface, and let D be a divisor on X whose linear system |D| has
no basepoints. Then φD, the map induced by |D|, is a 1−1 holomorphic map
and an isomorphism onto its image if and only if for every p and q in X we
have dimL(D − p− q) = dimL(D)− 2.

Since L(2p− p− p) = L(0) and l(0) = 1 while l(2p) = 2, by Proposition
3.8 we conclude that 2p is not very ample.

Recall the Riemann-Hurwitz’s formula.

Theorem 3.9 (Theorem 4.16 in [Mir], Ch.II ). Let F : X → Y be a non-
constant holomorphic map between compact Riemann surfaces. Then

2g(X)− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

(multp(F )− 1) . (3.10)

In our case, this implies that φ|2p| has p and three other points in the
ramification locus.
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