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Chapter 1

Introduction

This text is essentially a compilation of notes I used to give lectures for a graduate class I
taught at the University of Milan in late 2016 and early 2017. My original conception was of
a first-semester course on elliptic curves mostly from an algebraic background as was taught
to me when I was in graduate school. However, after interviewing some of my students
beforehand, I decided to choose which material to include based on their interests and
background. As they were very strong in complex analysis and complex algebraic geometry,
I wound up spending most of my lecture time on the theory of complex abelian varieties
(theta functions on complex tori, algebraization, uniformization of complex elliptic curves,
and a quick survey of polarizations), with only a slight emphasis on elliptic curves. In the
last several lectures I introduced the algebraic theory of elliptic curves over arbitrary fields
and was able to go over certain material on the classification of their endomorphism rings.
Unfortunately however, I ran out of time to get to many crucial algebraic topics such as the
Weil pairing, reduction of elliptic curves over local fields, and the Mordell-Weil theorem.

I taught the course assuming prerequisite knowledge based on the areas in which my
students generally seemed to have strong backgrounds. This is also reflected in the lecture
notes. For instance, these notes assume basic background knowledge of complex manifolds
and algebraic topology. They also assume that the reader has a reasonably strong background
in abstract and linear algebra, and that they have taken a first course in algebraic geometry
or at least has basic knowledge of the theory of projective varieties over fields. I went out
of my way to avoid any mention of schemes, however, and in developing the theory of theta
functions I chose to use the language of Cartier divisors (later changed to Weil divisors in
the case of elliptic curves) rather than line bundles. Some facts from algebraic geometry
which are a little less basic, such as the Riemann-Roch Theorem, are explained carefully but
not proven. The same is true of basic Lie theory, which is used only for §2.1. I have kept
algebraic number theory to a minimum (although if the course had gone on longer, of course
there would have been much more of it). Several ideas and results that I did not have time
to teach are outlined in some of the provided exercises.

My main sources for Chapter 2 were the first chapter of David Mumford’s book Abelian
Varieties ([5]) as well as Michael Rosen’s and James Milne’s articles on abelian varieties in
the book Arithmetic Geometry edited by Cornell and Silverman ([7] and [3] respectively),
the latter of which was used particularly for the material on polarizations. For the Abel-
Jacobi Theorem I mainly consulted Serge Lang’s book Introduction to Algebraic and Abelian
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Functions ([2]) while adopting some variations on his proof; for someone with a more complex
analytic background, [1] might be a good alternative. For the algebraic material in Chapter
3, more or less everything came from Silverman’s (first) book The Arithmetic of Elliptic
Curves ([8]).

1.1 Three definitions for elliptic curves

We begin by giving three definitions for an elliptic curve. Eventually we will explain each
definition more clearly and show that the definitions are equivalent. Our first definition
presents elliptic curves as a particular case of a much more general object: abelian varieties.
Our initial focus in this course will be on examining abelian varieties over the complex
numbers (that is, we will assume K = C in the definition below) with a particular emphasis
on complex elliptic curves.

Definition 1.1.1. A group variety over a field K is an algebraic variety A over K with
the property that there is a group law on the set of points A(K) such that group multiplication
and inversion are given by morphisms m : A×A→ A and i : A→ A. An abelian variety
is a group variety which is complete.

An elliptic curve over a field K is an abelian variety of dimension 1 over K.

Remark 1.1.2. a) We note that an abelian variety is smooth. Indeed, on any variety over K,
there is a K-point x0 at which the variety is smooth. If A is an abelian variety, for each y ∈ A,
the translation-by-y map ty : A→ A given by x 7→ yx is an invertible morphism from A to
itself and therefore induces an isomorphism on the tangent spaces (ty)∗ : Tx0X

∼→ Tyx0X.
Since every a ∈ A is equal to yx0 for some y, the tangent spaces at all points of A are
isomorphic to Tx0A, and so A is smooth everywhere.

b) It is possible to show from Definition 1.1.1 that the group law on A is commutative,
using in particular the fact that A is complete (see [5, §4] or [3, §2]). We will show this
for complex abelian varieties (i.e. K = C) in §2.1 but not in the general case. So every
abelian variety has the structure of an abelian group. The use of the adjective “abelian”
here is somewhat coincidental, as they were each independently named after Henrik Abel.
However, note that a group variety may have an abelian group structure without being
complete and therefore without being an abelian variety, e.g. the affine line A1

K with additive
group structure, or the punctured affine line AK r {0} with multiplicative group structure.

The next definition comes more directly from the classical setting of algebraic curves.

Definition 1.1.3. An elliptic curve over a field K is a smooth projective genus-1 curve
E over K along with a distinguished K-point O ∈ E(K).

Finally, we give the most elementary definition, to provide motivation for what follows
by giving a more concrete idea of the structure inherent in an elliptic curve (note that here
and everywhere below, K̄ denotes an algebraic closure of K).

Definition 1.1.4. An elliptic curve E over a field K is the locus E(K̄) of points (x, y) ∈
K̄2 satisfying an equation of the form y2 = f(x) := x3 + ax + b for a, b ∈ K such that the
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discriminant −4a3 − 27b2 is nonzero (i.e. the cubic polynomial f(x) doesn’t have multiple
roots), along with an extra “point at infinity” which we denote by O. It is endowed with a
binary operation (P,Q) 7→ P +Q defined as follows.

For any points P = (xP , yP ) and Q = (xQ, yQ) in E r {O}, let L be the line connecting
them. By convention, if P = Q, then L is the tangent line to the curve given by y2 = f(x)
at P . Then the line L intersects a unique third point R = (xR, yR) in E(K̄) (if the line L is
vertical, then we take R = O). We define the sum of P and Q, denoted P +Q or Q+P , to
be the point (xR,−yR) (which is again O if R = O).

For any point P ∈ E(K̄), we define the sum of P and O to be P +O = O + P = P .
For any algebraic extension K ′ ⊇ K, we define E(K ′) to be the set of points in E(K̄)

whose coordinates lie in K ′. By convention, O ∈ E(K ′).

Remark 1.1.5. For any algebraic extension K ′ of K the set of points E(K ′) is really the
set of K ′-points of the projective curve given by the homogenization y2z = x3 + axz2 + bz3

of the defining equation. Viewed this way, the “point at infinity” O is given by (x : y : z) =
(0 : 1 : 0). Loosely speaking, we may visualize it as a point lying “above” the affine curve
on the two-dimensional coordinate plane, with the y-coordinate being infinity. In this way,
it makes sense that every vertical line x = x0 intersects the curve at points P := (x0, y0),
(x0,−y0), and O, thus justifying the assignment of P +O = O+ P = P and the convention
that “if the line L is vertical, then we take R = O” above.

It turns out that the binary operation on the set E(K̄) which we defined above is a
commutative group law (thus justifying our use of the “+” notation).

Proposition 1.1.6. The binary operation given in Definition 1.1.4 is a group law on the
set E(K̄). More precisely,

a) it is commutative, and the point O ∈ E(K̄) acts as an additive identity;
b) any point P = (xP , yP ) ∈ E(K̄) has an inverse −P ∈ E(K̄) given by −P = (xP ,−yP );

and
c) it is associative, i.e. (P +Q) +R = P + (Q+R) for any P,Q,R ∈ E(K̄).

Parts (a) and (b) of the above proposition are immediate from Definition 1.1.4, while
part (c) is very tedious to prove (we will prove it later in an elegant way using the concept
of Picard group).

Remark 1.1.7. Note that for any algebraic extension K ′ ⊇ K, E(K ′) is a subgroup of
E(K̄), and if K ′′ is an algebraic extension of K ′, then E(K ′′) is a subgroup of E(K ′). This
follows from the fact that the slope of the line L from the definition must be an element of
any field containing the coordinates of the points P and Q.

In fact, it is possible to write down a formula for the addition law involving rational
functions of the coordinates of the two imput points, where all coefficients lie in K. In the
language of algebraic geometry, this is equivalent to the very important fact that the addition
law is a morphism E × E → E defined over K.
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1.2 Exercises

Exercise 1.2.1. Let E be the elliptic curve over Q given by the locus of points satisfying
y2 = x3 − x; let P = (0, 0) ∈ E(Q) ⊂ E(Q̄); and let Q := (x0, y0) be any point in
E(Q̄) r {(0, 0)}. Compute P +Q = (−1/x0,−y0/x

2
0).

Exercise 1.2.2. Actually prove directly part (c) of Proposition 1.1.6 – that is, show the
addition law given in Definition 1.1.4 satisfies the associative property. (This is extremely
tedious and I have never fully attempted it!)

Exercise 1.2.3. Given any elliptic curve E : y2 = f(x) as in Definition 1.1.4 over a field K,
characterize all points of order 2 in E(K). Show that the 2-torsion subgroup of E(K) must
be finite. What are the possible structures of the 2-torsion subgroup of E(K), and how do
they depend on the cubic polynomial f(x) ∈ K[x]? What is the structure of the 2-torsion
subgroup of E(K̄)?

1.3 Outline of these notes

We want to relate the three definitions given above for elliptic curves by studying the more
general objects known as abelian varieties. We will show that an abelian variety of dimension
1 has to be a curve with the properties given in Definition 1.1.3 and also that any curve
satisfying Definition 1.1.3 can be expressed in the form given in Definition 1.1.4 with an
additive group law on its points. In our journey through these different ways of viewing
elliptic curves, we will stop to further examine many interesting results.

We will first (in Chapter 2) study the theory of complex abelian varieties from the point of
view of examining complex tori and certain meromorphic functions known as theta functions
which can be used to realize (some of) them as abelian varieties. We will also state and
prove the Abel-Jacobi theorem (in §2.6), which can be used to construct classical examples
of complex abelian varieties (where the ground field K is C), including complex elliptic
curves.

We will then (in Chapter 3) examine elliptic curves over a general ground field K, focusing
mainly on maps between elliptic curves and endomorphism rings. In particular, we will study
ordinary and supersingular elliptic curves over finite fields along with their endomorphism
rings (in §3.2.4).
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Chapter 2

Complex abelian varieties

The goal of this chapter is to describe as fully as possible what properties characterize
complex abelian varieties and in particular complex elliptic curves. We start by noting that
by Definition 1.1.1, a complex abelian variety is in particular a complete complex variety.
Since completeness of a complex variety implies compactness as a complex manifold, and
the group law as in the definition gives this complex manifold the structure of a complex Lie
group, every complex abelian variety is a connected compact complex Lie group. We will
therefore begin our study of complex abelian varieties by investigating connected compact
complex Lie groups. We will see that in dimension 1, every connected compact complex Lie
group is an abelian variety (an elliptic curve), although many connected compact complex
Lie groups of dimension ≥ 2 cannot be given an algebraic structure and therefore are not
abelian varieties. Our most important result (Theorem 2.3.6) will be a criterion for when a
connected compact complex Lie group is an abelian variety.

2.1 Connected compact complex Lie groups

We first want to determine the structure of connected compact complex Lie groups (for the
moment, we are not considering whether or not they are algebraic).

Proposition 2.1.1. Let X be a connected compact complex Lie group. Then X is commu-
tative.

Proof. Let e denote the identity element of X and let TeX denote the tangent space of X at e;
it is a complex vector space of dimension equal to the dimension of X. For any x ∈ X, write
φx : X → X for the conjugation-by-x map a 7→ x−1ax. Then φx induces an endomorphism
(φx)∗ : TeX → TeX of the tangent space. It is clear that the map φ : X → EndC(TeX)
sending x ∈ X to the endomorphism (φx)∗ ∈ EndC(TeX) is a homomorphism of groups (so
its image lies in the group of automorphisms Aut(TeX)) as well as a holomorphic map. (In
fact, it can be used to define the Lie bracket on TeX.) Since X is compact and EndC(TeX)
is affine, φ must be a constant map and is therefore the trivial homomorphism; that is,
(φx)∗ = 1 ∈ Aut(TeX) for all x ∈ X.

Recall that the exponential map from the Lie algebra TeX to the Lie group X is given
by v 7→ γv(1) where γv : C → X is the unique holomorphic map whose differential
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(γv)∗ : C = T0C → TeX sends 1 ∈ T0C to v ∈ TeX. The exponential map has the im-
portant property of being a biholomorphism when restricted to the inverse image of a small
enough open neighborhood of 0 ∈ TeX. Moreover, exponential maps commute with holo-
morphic homomorphisms between Lie groups and their induced maps on the corresponding
Lie algebras (which are the tangent spaces at the identity). It follows from these properties
that given some small enough open neighborhood U 3 1 ∈ X, φx acts as the identity on U
for all x ∈ X. Now we claim that any such U generates X as a group. Indeed, if we let
U ′ denote the subgroup of X generated by U , then U ′ is also open since for each x ∈ U ′,
xU ⊆ U ′, and the connectedness of X proves that its only open subgroup is X itself. It
follows from this that since each φx is a group automorphism, φx must act as the identity
on all of X for any x ∈ X. Thus, X is commutative.

In light of the above proposition, from now on, we will use “+” to denote the group
operation on X and denote the identity of X by 0.

Proposition 2.1.2. Let X be a connected compact complex Lie group of dimension g. Then
X is a complex torus; that is, X ∼= V/Λ, where V is a complex vector space of dimension g,
Λ is a full lattice (i.e. of rank 2g) in V , and V/Λ is given the Lie group structure it inherits
as a quotient of the Lie group V .

Proof. Let π : T0X → X be the exponential map defined in the proof of Proposition 2.1.1.
One can show directly from the definition of the exponential map that the commutativity
of X implies that π is a homomorphism. Let a ∈ X be an element lying in the image of
π, and let U be a small enough open neighborhood of 1 ∈ X such that π|W : W → U is
an isomorphism for some open W ⊆ π−1(U) with 0 ∈ W . Then clearly the subset a + U
is contained in the image of π, and so the image of π is open. Since X is connected, this
implies that π is surjective. Now if v ∈ T0X is any element of ker(π), it is clear that for
W as above, (v + W ) ∩ ker(π) = {v}. It follows that ker(π) is a discrete subgroup of T0X.
The fact that X is compact implies that Λ := ker(π) is a full lattice in V := T0(X), and the
proposition is proved.

Remark 2.1.3. It is easy to see from the holomorphic isomorphism X ∼= V/Λ that π : V →
X is a covering map. Since V is simply connected, it is in fact a universal covering space for
X. It immediately follows that the fundamental group π1(X, 0), as well as the first singular
homology group H1(X,Z), can be identified with Λ ∼= Z2g. Note moreover that this result
shows that X is homeomorphic to (S1)2g, so it is very easy to compute the dimensions of
the singular homology groups Hi(X,Z) for all i ≥ 0 in terms of the dimension of X.

Corollary 2.1.4. As an abstract group, X is divisible; that is, for any nonzero integer n,
the multiplication-by-n map [n] : X → X is surjective. Moreover, the kernel X[n] of [n] is
isomorphic to the group (Z/nZ)2g, where g is the dimension of X.

Proof. We construct an isomorphism of real vector spaces V
∼→ R2g by choosing a basis of

the free Z-module Λ ⊂ V and sending each basis element to a standard basis element of
R2g. This induces an isomorphism of quotient groups X ∼= V/Λ

∼→ (R/Z)2g, from which the
statements immediately follow.

6



2.2 Divisors on complex tori

We now want to study the group of divisors on any complex torus X, with our eventual
goal being a characterization of all ample divisors on X which (if they exist) may be used to
characterize X as an algebraic variety. In this subsection, we will only use a fairly elementary
definition of Cartier divisors, which will be more convenient for the moment, although the
reader who has studied divisors in the context of algebraic geometry should keep in mind that
this is equivalent to the notion of Weil divisors (formal sums of codimension-1 subvarieties)
in the case that X is a smooth complex variety.

Definition 2.2.1 (Cartier divisors). Let Y be a connected complex manifold.
a) The (additive) group Div(Y ) of “local function data” on Y is defined as follows. A “lo-

cal function datum” is given by D = {{Ui}i∈I , {fi}i∈I}, where {Ui}i∈I is a finite open cover of
Y and, for each i ∈ I, fi is a nonzero meromorphic function defined on the open subset Ui ⊂
Y such that for any i, j ∈ I such that Ui∩Uj 6= ϕ, the quotient fi/fj (and fj/fi) is holomor-
phic and nonvanishing on Ui∩Uj. We define the sum of two elements D1 = ({Ui}i∈I , {fi}i∈I)
and D2 = ({Vj}j∈J , {gj}j∈J}) to be D1 +D2 := ({Ui ∩ Vj}(i,j)∈I×J , {figj}(i,j)∈I×J).

b) A “local function datum” ({Ui}i∈I , {fi}i∈I) defined in this way is said to be effective
if each fi is holomorphic on Ui. It is said to be trivial if each fi is both holomorphic and
nonvanishing on Ui.

c) The group of (Cartier) divisors on Y , denoted Div(Y ), is defined to be the group
equivalence classes of “local function data” on Y modulo trivial elements. If a divisor D is
identified in this way with some ({Ui}i∈I , {fi}i∈I) for some open cover {Ui}i∈I , then we say
that D can be “represented by” this data. It is an easy exercise to check that the property of
effectivity is well-defined for elements of Div(Y ).

d) A divisor D ∈ Div(Y ) is said to be principal if it can be represented by ({Y }, {f})
for some nonzero meromorphic function f on Y . In this case, we denote D by (f).

We observe right away that the divisor group is commutative (hence the “+” notation)
and that the trivial divisor (which we denote by 0) is the identity element. It is easy to
verify that the notion of positivity or effectiveness of divisors induces a partial ordering on
the divisor group; namely, we write D ≥ D′ if D−D′ is positive (thus a divisor D is positive
if and only if D ≥ 0).

We denote the field of meromorphic functions on Y (resp. the set of principal divisors
on Y ) by M(Y ) (resp. by Prin(Y )). The following fact is obvious from the definitions.

Proposition 2.2.2. The set of principal divisors on a complex manifold Y forms a subgroup
of Div(Y ) and is the image of the homomorphismM(Y )× → Div(Y ) defined by sending any
nonzero meromorphic function f to the divisor represented by ({Y }, {f}). The kernel of this
homomorphism is the subgroup of nowhere-vanishing holomorphic functions on Y .

There is a very straightforward way to define pullbacks of divisors via surjective holomor-
phic maps f : Y ′ → Y ; namely, given any divisorD ∈ Div(Y ) represented by ({Ui}i∈I , {fi}i∈I),
we let f ∗(D) ∈ Div(Y ′) be given by ({f−1(Ui)}i∈I , {fi ◦ f}i∈I). In this way, f : Y ′ → Y
induces a homomorphism of groups f ∗ : Div(Y )→ Div(Y ′).

In our quest to characterize the complex tori which can be embedded into projective space
as algebraic varieties, it will be necessary to study positive divisors on them. It would be nice
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to be able to characterize positive divisors on a complex torus X as principal divisors, since
then our investigation would boil down to considering the set of holomorphic functions on
X. But unfortunately, since such an X is compact, the only holomorphic functions defined
everywhere on X are the constant functions, so the only positive principal divisor in Div(X)
is the trivial divisor 0. However, we can pull back any divisor on X via π : V → V/Λ = X
to get a divisor on V , and it turns out that the resulting divisor is principal by the following
classical result.

Theorem 2.2.3 (Cousins). Every divisor on the complex manifold Cn for any n ≥ 1 is
principal.

Definition 2.2.4. A divisor on V is said to be periodic if it lies in the image of π∗ :
Div(X)→ Div(V ).

We now want to characterize all periodic divisors on V by representing them with func-
tions in M(V ) that have nice properties. We observe first of all that if f ∈ M(V ) has
periodic divisor with respect to the lattice Λ, that means that for each λ ∈ Λ, gλ(v) :=
f(v + λ)/f(v) ∈ M(V ) must be holomorphic and nonvanishing. (I like to say that such a
function is “almost periodic” with respect to Λ; it is only actually periodic if (f) = π∗D
with D ∈ Prin(X).) Moreover, these functions gλ satisfy the compatibility condition that

gλ1+λ2(v) = gλ1(v)gλ2(v + λ1), ∀λ1, λ2 ∈ Λ. (2.1)

Moreover, since each gλ is holomorphic and nonvanishing, we may write gλ = e2πiGλ for some
holomorphic function Gλ ∈M(V ). Then the condition in (2.1) becomes

Gλ1+λ2(v) ≡ Gλ1(v) +Gλ2(v + λ1) mod Z, ∀λ1, λ2 ∈ Λ. (2.2)

Recall that a function H : V × V → C is a Hermitian form on the complex vector
space V if it is C-linear in the first argument and if H(w, v) = H(v, w) for all v, w ∈ V .
It is an easy exercise in linear algebra to show that if a function H : V × V → C is a
Hermitian form, its imaginary part E := =H : V × V → R is an R-linear alternating form
(i.e. E(w, v) = −E(v, w) for all v, w ∈ V ) and if E(iv, iw) = E(v, w) for all v, w ∈ V .
Conversely, any such E : V × V → R, determines a Hermitian form H : V × V → C by
H(v, w) = E(iv, w) + iE(v, w). In light of this, from now on, in any context where
we have a Hermitian form H, we will use E to denote its imaginary part, and
conversely, whenever we have an alternating R-bilinear form E, we will denote
the corresponding Hermitian form by H.

Definition 2.2.5. A theta function (with respect to the lattice Λ) is a function θ ∈M(V )
which satisfies the property that, for all v ∈ V and λ ∈ Λ,

θ(v + λ)/θ(v) = e2πi(L(v,λ)+J(λ))

for some map J : Λ → C and some map L : V × Λ → C which is C-linear in the first
argument. Given a Hermitian form H : V × V → C, we say that such a function θ is a
theta function for H if we have E(λ1, λ2) = L(λ1, λ2)− L(λ2, λ1) for λ1, λ2 ∈ Λ.
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Note that the set of all theta functions on V with respect to Λ forms a group under
multiplication, and that in fact, the map from this group to the group of divisors Div(X)
defined by sending a theta function θ to the divisor D ∈ Div(X) such that (θ) = π∗D is a
group homomorphism which we denote by

div : {theta functions on V w.r.t. Λ} −→ Div(X).

Its kernel is the subgroup of trivial theta divisors, i.e. theta divisors θ which are holomorphic
and nonvanishing on V .

We will give an incomplete proof of the following result, as the only full argument I know
involves techniques of sheaf cohomology which are beyond the scope of this course (see the
arguments in [5, §2]).

Proposition 2.2.6. For every divisor D ∈ Div(X), there is a unique Hermitian form H
and a function θ ∈M(V ) with (θ) = π∗D which is a theta function for H.

Proof. We omit the proof of the fact that there always exists a function θ ∈ M(V ) with
(θ) = π∗D such that

θ(v + λ)/θ(v) = e2πi(L(v,λ)+J(λ)), ∀v ∈ V, λ ∈ Λ

with L : V×Λ→ C linear in the first argument, or equivalently, the map div : {theta functions} →
Div(X) is surjective. Now for any λ1, λ2 ∈ Λ, condition (2.2) can be written as

L(v, λ1 + λ2) + J(λ1 + λ2) ≡ L(v, λ1) +L(v, λ2) +L(λ1, λ2) + J(λ1) + J(λ2) mod Z, (2.3)

which forces
L(v, λ1 + λ2)− L(v, λ1)− L(v, λ2) = 0 (2.4)

(here we get equality instead of equivalence modulo Z because it holds when v = 0 and
therefore holds for all v by continuity) and

J(λ1 + λ2)− J(λ1)− J(λ2) ≡ L(λ1, λ2) (mod Z). (2.5)

Moreover, by switching the roles of λ1 and λ2, we get L(λ1, λ2) ≡ L(λ2, λ1) (mod Z). In
particular, L is Z-linear in the second argument, and we may extend L to a map V ×V → C
which is R-bilinear and symmetric modulo Z. Set E(v, w) = L(v, w) − L(w, v) for all
v, w ∈ V . Then E : V × V → C is clearly R-bilinear and skew-symmetric; moreover,
E(Λ,Λ) ⊆ Z, and so E takes values in R. It is also a tricky but elementary exercise to check
that E(iv, iw) = E(v, w) for all v, w ∈ V . Therefore, in particular E is the imaginary part
of the Hermitian form H : V × V → C given by H(v, w) = E(iv, w) + iE(v, w).

We now have a well-defined map from the multiplicative group of theta divisors on V
(with repsect to Λ) to the additive group of Hermitian forms on V which is clearly a group
homomorphism; we denote it by

H : {theta functions on V w.r.t. Λ} −→ {Hermitian forms on V w.r.t. Λ}.

We will now show that its kernel contains the subgroup of trivial theta functions. It is
easy to see that if h ∈ M(V ) is any trivial theta function, then h must be of the form
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e2πi(A(v)+B(v)+C), where A : V → C is a quadratic form, B : V → C is a linear functional,
and C ∈ C is a constant. Then for any λ ∈ Λ, h(v + λ)/h(v) can be written as

e2πi([A(v+λ)−A(v)−A(λ)]+[A(λ)+B(λ)]),

with A(v + λ) − A(v) − A(λ) symmetric and bilinear. Using this, one can check that the
Hermitian form H corresponding to such an h is the zero form.

It follows that the map H factors through a map

{theta functions}/{trivial theta functions} ∼= Div(X) −→ {Hermitian forms},

thus showing that each divisor D ∈ Div(X) uniquely determines a Hermitian form H.

Note that it was shown in the above proof that if θ is a theta function for some Hermitian
form H, the imaginary part E of H must be Z-valued on Λ×Λ. This motivates the following
crucial definition.

Definition 2.2.7. A Riemann form associated to a complex torus X ∼= V/Λ is a Hermi-
tian form on V whose imaginary part is Z-valued on Λ× Λ.

Proposition 2.2.6 tells us in particular that the image of the map H defined in its proof
is contained in the additive group of Riemann forms, so that we have group homomorphisms

{theta functions w.r.t. Λ}/{trivial theta functions} ∼→ Div(X)→ {Riemann forms w.r.t. Λ}.

Combining Lemma 2.3.4(b) below with Exercise 2.7.1, we see that the second map is a
surjection. We shall describe its kernel in §2.5.

Proposition 2.2.8. Let H : V × V → C be the Riemann form associated to some divisor
D ∈ Div(X) via Proposition 2.2.6. Then there exists a theta function for H, and any theta
function θ ∈ M(V ) for H can be written as hθD, where h is a trivial theta function (i.e.
(h) = 0 ∈ Div(V )) and θD ∈M(V ) is a theta function satisfying

θD(v + λ)/θD(v) = e2πi( 1
2i
H(v,λ)+ 1

4i
πH(λ,λ)+K(λ)),

where K : Λ→ R satisfies the property that

K(λ1 + λ2)−K(λ1)−K(λ2) ≡ 1

2
E(λ1, λ2) mod Z, ∀λ1, λ2 ∈ Λ.

Moreover, θD is unique up to multiplication by a constant in C×.

Proof. We first have to show that a function θD with the property given in the statement
is a theta function for H. This follows from verifying that L0(v, λ) := 1

2i
H(v, λ) satisfies

L0(λ1, λ2)− L0(λ2 − λ1) = 1
2i

(H(λ1, λ2)−H(λ2, λ1)) = E(λ1, λ2).
Now we show that such a function θD exists. We know from Proposition 2.2.6 that there

exists a theta function θ satisfying θ(v+λ)/θ(v) = e2πi(L(v,λ)+J(λ)) where L is C-linear in the
first variable and satisfies L(λ1, λ2) − L(λ2, λ1) = E(λ1, λ2). Then M := L − L0 restricted
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to Λ × Λ is a symmetric Z-bilinear form which can be extended R-linearly to a symmetric
R-bilinear form M : V × V → C (actually C-bilinear because L and L0 are C-bilinear in the

first argument). Then h1(v) := e2πi( 1
2
L(v,v)) is clearly a trivial theta function (see the proof

of Proposition 2.2.6), and replacing θ by θ/h1(v) allows us to replace L by L0 = 1
2i
H in our

expression for θ(v + λ)/θ(v). Now the relation (2.5) says that J(λ1 + λ2)− J(λ1)− J(λ2) ≡
1
2i
H(λ1, λ2) (mod Z) for λ1, λ2 ∈ Λ. Setting K(λ) = J(λ)− 1

4i
H(λ, λ), we get

K(λ1 +λ2)−K(λ1)−K(λ2) ≡ 1

2i
H(λ1, λ2)− 1

2i
RH(λ1, λ2) =

1

2i
E(iλ1, λ2) (mod Z). (2.6)

Since E takes values in R, the imaginary part =K of K is additive on Λ and can therefore
be extended to an R-linear functional =K : V → C. Note that =K(iv) + i=K(v) defines a
C-linear functional V → C whose imaginary part is =K. Now by replacing θ with θ divided
by the trivial theta function h2(v) := e=K(iv)+i=K(v), we may assume that K is takes values
in R without affecting K(λ1 + λ2) − K(λ1) − K(λ2), thus fulfilling the properties given in
the statement of the proposition.

The uniqueness of θD up to a constant now follows quickly from the fact that there is no
nontrivial linear functional B : V → C which takes values in R.

We call a theta function satisfying the properties in the statement of the above proposition
a normalized theta function for the divisor D.

2.3 Algebraization of complex tori

For any divisor D ∈ Div(X), we set

L(D) = {f ∈M(X) | (f) +D ≥ 0} ∪ {0}.

(We may think of the divisor associated to the constant function 0 as greater than every
other divisor.) Note that L(D) is a vector space.

For any divisor D ∈ Div(X), let θ0 be a theta function whose divisor is π∗D. We define
L(θ0) denote the set of all holomorphic functions θ ∈M(V ) which have the same “translation
functions” as θ0 has, i.e. θ(v + λ)/θ(v) = θ0(v + λ)/θ0(v) (by convention, 0 ∈ L(θ0)). It is
clear that L(θ0) is also a vector space. In fact, it is easy to see from the definitions that we
have an isomorphism L(θ0)

∼→ L(D) given by θ 7→ θ/θ0.
Below we again let θD denote a normalized theta function for D as given by Proposition

2.2.8, although it is clear that the statements hold when θD is replaced by any θ0 with the
same translation functions.

Definition 2.3.1. A divisor D ∈ Div(X) is very ample if there exists a basis {θ0, ..., θm}
of L(θD) such that the map Θ : X → PmC induced by the map X → PmC given by v 7→
(θ0(v) : ... : θm(v)) is an embedding of X into PmC , i.e. if we have the following:

i) Θ is well-defined; that is, we do not have θ0(v) = ... = θm(v) = 0 for any v ∈ V ;
ii) Θ : X → PmC is an injection; and
iii) The induced maps on tangent spaces Θ∗ : TaX → TΘ(a)PmC are injections.
A divisor D ∈ Div(X) is ample if there is an integer n ≥ 1 such that nD is very ample.
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Our goal is to characterize ample divisors D ∈ Div(X) in terms of their corresponding
Riemann forms. If we can find an ample divisor D, we can use generators of L(nD) for some
integer n ≥ 1 to embed X into projective space over C and give X the structure of a variety.

The following proposition shows that there is no chance of this unless the Riemann form
corresponding to D is positive definite.

Proposition 2.3.2. Let D ∈ Div(X) be a divisor, and let H : V ×V → C be its correspond-
ing Riemann form.

a) Let W0 = {w ∈ V | H(v, w) = 0 ∀v ∈ V } be the right kernel of the pairing H. Then
any function θ ∈ L(θD) must factor through the quotient map V � V/W0. In particular, if
H is degenerate, then Θ is not one-to-one.

b) If H is not positive semidefinite (i.e. if H(v, v) < 0 for some v ∈ V ), then we have
L(θD) = {0} and so Θ is not defined.

Proof. Choose any θ ∈ L(θD). We first note that since H is trivial on V × (W0∩Λ), we have
θ(w + λ)/θ(w) = e2πiK(λ) for all λ ∈ W0 ∩ Λ. Since K takes values in R, |e2πiK(λ)| = 1. Let
C0 ⊂ V be a compact subset such that C0 + (W0 ∩ Λ) = W0. For any fixed v ∈ V , we then
have maxw∈W{|θ(v + w)|} = maxw′∈C0{|θ(v + w′)|}, which is finite because C0 is compact.
Then by the maximum principal for holomorphic functions on W0, we see that θ(v+w) must
be constant as a function of w, proving statement (a).

Now suppose that H is not positive semidefinite. Let W ⊆ V be a nontrivial subspace
such that H(w,w) < 0 for all nonzero w ∈ W . Let C ⊂ V be a compact subset such
that C + Λ = V . Fix any v ∈ V and θ ∈ L(θD), consider the function on W given by
w 7→ θ(v + w). If we write w = w′ + λ for w′ ∈ C and λ ∈ Λ, then we get

|θ(v + w)| = |θ(v + w′ + λ)| = |θ(v + w′)|eπ<H(v+w′,λ)+ 1
2
πH(λ,λ). (2.7)

It is straightforward to compute that

<H(v + w′, λ) +
1

2
H(λ, λ) =

1

2
H(w,w) + <H(v, w)−<H(v, w′)− 1

2
H(w′, w′). (2.8)

Note that as w → ∞, we have H(w,w) → −∞, which dominates the other terms on the
right-hand side, because <H(v, w) is linear in w and the rest of the terms depend only on
w′ which varies over the compact subset C and are therefore bounded. Thus, |θ(v+w)| → 0
as w →∞. Then by the maximum principal for holomorphic functions on W , θ(v +w) = 0
for all w ∈ W and therefore θ = 0, proving statement (b).

The next result, known as the Lefschetz Embedding Theorem, says that the converse is
also true.

Theorem 2.3.3. Let H be a positive definite Riemann form. Then the divisor D ∈ Div(X)
corresponding to H is ample. More precisely, for any n ≥ 3, the divisor nD ∈ Div(X) is
very ample.

Before we can prove this theorem, we need a major lemma that is due to Frobenius. Recall
that for any R-bilinear alternating form E : V × V → R, the Pfaffian of E is defined to be
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the nonnegative real number
√

det(E), where det(E) is understood to be the determinant
of the matrix (E(λi, λj)) for some (any) Z-basis λ1, ..., λ2g of Λ. We observe that det(E) is
a positive integer if E(Λ,Λ) ⊆ Z.

Lemma 2.3.4. Let Λ ⊂ V be as above, and let E : Λ×Λ→ Z be a nondegerate alternating
form.

(a) There is a basis {λ1, ..., λ2g} of Λ and positive integers e1, ..., eg ∈ Z with ei|ei+1 for
1 ≤ i ≤ g − 1, such that E(λi, λi+g) = −ei for 1 ≤ i ≤ g and E(λi, λj) = 0 otherwise for
1 ≤ i, j ≤ 2g.

(b) Suppose that K : Λ → R is a function satisfying K(λ1 + λ2) − K(λ1) − K(λ2) ≡
1
2
E(λ1, λ2) (mod Z). Then the C-vector space of theta functions θ on V whose translation

functions are given by θ(v + λ)/θ(v) = e2πi( 1
2i
H(v,λ)+ 1

4i
πH(λ,λ)+K(λ)) has dimension equal to√

det(E) = e1...eg. (In particular, there exists such a theta function which is nontrivial.)

For reasons of time, we omit the proof of the above lemma. The following corollary is
immediate from the lemma and will be useful later.

Corollary 2.3.5. If D ∈ Div(X) is a divisor whose associated Riemann form H is positive
definite with imaginary part E, then for any integer n ≥ 1, the dimension of the complex
vector space L(nD) is ng

√
det(E).

Proof (of Theorem 2.3.3). We will prove this for n = 3; the argument for greater n is similar.
To prove show that property (i) in Definition 2.3.1 holds for 3D, we observe that given

any θ ∈ L(θD) and any choice of a, b ∈ V , the meromorphic function θa,b ∈ L(V ) defined by
θa,b(v) = θ(v + a+ b)θ(v − a)θ(v − b) satisfies

θa,b(v + λ)/θa,b(v) = e2πi( 1
2i
H(v+a+b,λ)+ 1

2i
H(v−a,λ)+ 1

2i
H(v−b,λ)+ 3

4i
H(λ,λ)+3K(λ))

= e2πi( 1
2i

3H(v,λ)+ 1
4i

3H(λ,λ)+3K(λ)) = (θ(v + λ)/θ(v))3 (2.9)

for v ∈ V , λ ∈ Λ. So θa,b ∈ L(3H), and, given any v0 ∈ V , by choosing appropriate a, b ∈ V
we can ensure that θa,b(v0) 6= 0 and therefore not all basis elements of L(θ3D) vanish at v0.

To prove that 2.3.1(ii) holds for 3D, it suffices to show that for any θ ∈ L(θD), for
v1, v2 ∈ V , if θ(v1+a+b)θ(v1−a)θ(v1−b) is a constant multiple of θ(v2+a+b)θ(v2−a)θ(v2−b)
for all a, b ∈ V , then v1 − v2 ∈ Λ. Taking logarithmic differentials with respect to a, we get

θ(v1 + a+ b)−1dθ − θ(v1 − a)−1dθ = θ(v2 + a+ b)−1dθ − θ(v2 − a)−1dθ (2.10)

for any b ∈ V . It follows that the differential given by v 7→ θ(v2 + v)−1dθ − θ(v1 + v)−1dθ
is translation-invariant (after renaming the variable a as v and considering that b can be
chosen arbitrarily) and is therefore equal to dB(v) for some linear functional B : V → C.
After integrating and exponentiating, we get

θ(v + v2)/θ(v + v1) = ceB(v) =⇒ θ(v + (v2 − v1))/θ(v) = c′eB(v) (2.11)

for some constants c, c′ ∈ C×. Using the property given in Definition 2.2.5, we deduce from
substituting v+λ for v in (2.11) and using our translation formula for θ that e2πi( 1

2i
H(v2−v1,λ)) =

eB(λ) for all λ ∈ Λ. Thus, we have that πH(v2 − v1, λ) ≡ B(λ) (mod 2πiZ). Now we have
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πH(v2 − v1, λ) − B(λ) = πH(λ, v2 − v1) + 2πiE(v1 − v2, λ) − B(λ) ∈ 2πiZ, and it follows
from the fact that E is real-valued that πH(λ, v2− v1)−B(λ) takes purely imaginary values
for λ ∈ Λ. Thus, v 7→ πH(v, v1− v2)−B(v) takes purely imaginary values, but this function
is C-linear, so we have πH(v, v2 − v1)−B(v) = 0 for v ∈ V . Then

πH(v2−v1, λ)−B(λ) = 2πiE(v2−v1, λ)+πH(λ, v2−v1)−B(λ) = 2πiE(v2−v1, λ) ∈ 2πiZ,
(2.12)

implying that E(v2 − v1, λ) ∈ Z for all λ ∈ Λ. Thus, letting Λ′ = Λ + (v2 − v1)Z, we have
E(Λ′,Λ′) ⊆ Z. In turn, this implies (as another easy exercise) that the subgroup Λ′ ⊂ V is
another lattice containing Λ, or equivalently, that [Λ′ : Λ] <∞.

Now (2.11) tells us that we have

θ(v + (v2 − v1))/θ(v) = c′eπH(v,v2−v1) = e2πi( 1
2i
H(v,v2−v1)+ 1

4i
H(v2−v1,v2−v1)+K′(v2−v1)) (2.13)

where c′′ ∈ C× is a constant and K ′ : Λ′ → C is an extension of K (not necessarily satisfying
the perscribed properties for K : Λ → R). Therefore, θ is actually a theta function for H
with respect to the lattice Λ′. We write detΛ′(E) for the determinant of the alternating form
E : Λ′ × Λ′ → Z. Note that by Lemma 2.3.4(b), the space LH,K′ of theta functions θ′ with

respect to Λ′ for H satisfying θ′(v + λ′)/θ′(v + λ) = e2πi( 1
2i
H(v,λ′)+ 1

4i
H(λ′,λ′)+K′(λ′)) for λ′ ∈ Λ′

has dimension equal to
√

detΛ′(E).
Suppose that Λ′ ) Λ. Then one can show as an easy exercise in linear algebra that

det(E) > detΛ′(E). We have shown above that every theta function θ ∈ L(θD) belongs to
the space of theta functions with respect to Λ′ whose translation functions are as in Definition
2.2.5 with L(v, λ) = 1

2i
H(v, λ) and J ′(λ) = 1

4i
H(λ, λ)+K(λ) for some K ′ : Λ′ → C extending

K. There are only finitely many choices for K ′ since [Λ′ : Λ] < ∞ and the relation in (2.5)
must be satisfied, and each space LH,K′ has dimension

√
detΛ′(E) <

√
det(E). We therefore

a contradiction. Thus, Λ′ = Λ, implying that v2 − v1 ∈ Λ, as desired.
Finally we show that 2.3.1(iii) holds for 3D. After fixing a basis for V , we write z1, ..., zg

for the corresponding set of coordinate functions on V . Let Θ̃ : V → PC be the composition
with Θ as defined in Definition 2.3.1 with the covering map V � X. Then it obviously
suffices to show that at every point v0 ∈ V , the induced map Θ̃∗ : Tv0V → TΘ̃(v0)PmC is

injective. Choose any point v0 ∈ V , and let
∑g

i=1 αi
∂
∂zi
∈ Tv0V be a tangent vector whose

image under Θ̃∗ vanishes. If we write {θ0, ..., θm} for a basis of L(θ3D) and assume without
loss of generality that θ0(z0) 6= 0, we then have

g∑
i=1

αi
∂(φ/θ0)

∂zi
(v0) = 0 (2.14)

for every φ ∈ L(θ3D). Suppose that this choice of tangent vector is nonzero; we may as-
sume without loss of generality that α1 6= 0. Then we have (using the quotient rule for
differentiation)

α1

θ0(v0)2

(
θ0(v0)

∂φ

∂z1

(v0)− φ(v0)
∂θ0

∂z1

(v0)
)

= 0

=⇒ φ(v0)−1 ∂φ

∂z1

(v0) = θ0(v0)−1dθ0(v)

∂z1

(v0) =: c (2.15)
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for every φ ∈ L(θ3D). Now choose θ ∈ L(θD) and define θa,b(v) ∈ L(θ3D) as before for any
a, b ∈ V . Putting θa,b for φ in (2.15) gives us

θ(v0− a)−1 ∂θ

∂z1

(v0− a) + θ(v0− b)−1 ∂θ

∂z1

(v0− b) + θ(v0 + a+ b)−1 ∂θ

∂z1

(v0 + a+ b) = c. (2.16)

By treating the expression in (2.16) as a (constant) function in the variable a (which we
rename as v) and taking partial derivatives with respect to a, we see that

∂

∂zi

(
(v0 − v)−1 ∂θ

∂z1

(v0 − a)
)

=
∂

∂zi

(
θ(v0 + a+ b)−1 ∂θ

∂z1

(v0 + a+ b)
)

(2.17)

for 1 ≤ i ≤ g and for any choice of b. In particular, it follows that θ(v0 + v)−1 ∂θ
∂z1

(v0 + v) is
linear (but not necessarily homogeneous) in v; we write it as µz1 + ν(v) for some constant
µ ∈ C and linear function ν not depending on z1. By integration and exponentiating on
both sides of the equation θ(v0 + v)−1 ∂θ

∂z1
(v0 + v) = µz1 + ν(v) with respect to z1, we get

that θ(v0 + z1) = e
1
2
µz21+ν(v0)z1θ(v0). Let e1 ∈ V be the unit basis vector in the direction of

z1. Then we have
θ(v0 + de1)/θ(v0) = e

1
2
µd2+ν(v0)d. (2.18)

Similarly to our argument above, we deduce from substituting v+λ for v in (2.18) and using
our translation formula for θ that πH(z+de1, λ) ≡ d(ν(v0 +λ)−ν(v0)) (mod 2πiZ). Since ν
is linear (possibly non-homogeneous), the map λ 7→ d(ν(v0 +λ)− ν(v0)) defines a functional
on V . Now we see using the same arguments as were used above to show that E(de1,Λ) ⊆ Z
for any d ∈ C. But this contradicts the nondegeneracy of H and thus also our assumption
that the tangent vector

∑g
i=1 αi

∂
∂zi
∈ Tv0V is nonzero.

We have now more or less shown the main theorem of this entire chapter, which gives a
criterion for any complex torus X to be algebraic. (Note that this in turn is equivalent to X
being an abelian variety, because a well-known result of Chow shows that the multiplication
and inverse maps associated to X are in fact morphisms due to the compactness of X.) We
may think of it as a sort of “main theorem of complex tori” or “main theorem of complex
abelian varieties” although, to my knowledge, it is not given such a name anywhere in the
literature.

Theorem 2.3.6. A complex torus X ∼= V/Λ has the structure of an abelian variety if and
only if there exists a positive definite Riemann form H : V × V → C associated to X.

It turns out to be the case that for g ≥ 2, “most” complex tori of dimension g do not
possess any positive definite Riemann form and are therefore not abelian varieties (we will
not give a proof of this here). However, as we will see immediately at the start of the
next section, every 1-dimensional complex torus has a positive definite Riemann form and
is therefore an elliptic curve.

2.4 Uniformization of elliptic curves

In this subsection we deal only with a complex torus X of dimension g = 1, which can always
be realized as an elliptic curve over C because it always has a positive definite Riemann
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form. Indeed, let {λ1, λ2} any ordered basis of Λ ordered so that =(λ2/λ1) > 0, and define
E : C × C → R to be the unique alternating R-bilinear form such that E(λ1, λ2) = −1.
(In fact, E does not depend on the choice of ordered basis with this property – see Exercise
2.7.2.) Then clearly E(Λ,Λ) = Z and it is easy to check that E(iz, z) > 0 for any nonzero
complex number z, and so E is the imaginary part of a positive definite Riemann form
H : C × C → C. It follows from Theorem 2.3.6 and more specifically Theorem 2.3.3 that
any divisor D ∈ Div(X) whose associated Riemann form is H is ample, and in fact that 3D
is very ample so that a basis of L(3D) can be used to embed X into some projective space
(this is called “uniformization”). Our goal now is to make this more explicit.

It will now be more convenient to switch from viewing elements of Div(X) as Cartier
divisors to viewing them as Weil divisors – that is, each divisor D ∈ Div(X) is a finite formal
sum of points in X. Since X is a smooth curve, the notions of Cartier divisor and Weil divisor
are equivalent. In particular, looking at Weil divisors allows us to use the notion of “degree”:
if an element D ∈ Div(X) can be written as D =

∑m
i=1 ni(Pi) for integers ni ∈ Z and points

Pi ∈ X, its degree is deg(D) =
∑m

i=1 ni. In this way, deg : Div(X)→ Z is a homomorphism
which preserves the partial ordering on Div(X).

Proposition 2.4.1. There exist meromorphic functions x, y ∈ M(X) satisfying a cubic
polynomial equation f(x, y) = 0 such that X can be identified with the closure in P2

C of the
curve defined by the relation f(x, y) = 0.

Proof. Let D ∈ Div(X) be a divisor whose associated Riemann form is the H defined
with respect to an ordered basis {λ1, λ2} ⊂ Λ as above. We note that the 2 × 2 matrix
given by (E(λi, λj)) has determinant 1, so

√
det(E) = 1, and so Corollary 2.3.5 says that

dimC L(nD) = n for all n ≥ 1.
We first observe that deg(D) ≥ 0. Indeed, the fact that L(D) is nontrivial implies that

there exists a nonzero function f0 ∈ M(X) such that (f0) + D ≥ 0, which implies that
deg((f0)) ≥ − deg(D). But every nonzero meromorphic function on a compact Riemann
manifold has as an equal number of poles and zeros (counting multiplicity), so deg((f0)) = 0
and deg(D) ≥ 0. Now note that if we subtract any principal divisor from D, the associated
Riemann form is still H, so in particular we may and will replace D with D − (f0). Then
we get 1 ∈ L(D). Since (1) = 0 ∈ Div(X), in fact we have D ≥ 0. If D = 0 then
dimC L(nD) = dimC L(0) = 1 for all n ≥ 1, a contradiction, so D > 0.

Since L(D) has dimension 1 and contains the constant functions, there are no nonconstant
meromorphic functions on X whose associated divisors are ≥ −D.

Since L(2D) has dimension 2, it must be generated by {1, x}, where x ∈M(X) is some
nonconstant function such that (x) ≥ −2D.

Since L(3D) has dimension 3 and 〈1, x〉 = L(2D) ( L(3D), there is a function y ∈M(X)
such that {1, x, y} is a basis of L(3D) and (y) ≥ −3D. We claim that y cannot be a
polynomial function of x. Indeed, Theorem 2.3.3 says that 3D is very ample and so the
function X → P2

C given by [1 : x : y] is a projective embedding. Then if y is a rational
function of x, the injectivity of [1 : x : y] : X ↪→ P2

C implies that [1 : x] : X → P1
C is also

injective. Note that the only possible images of [1 : x] are constant or the entire Riemann
sphere since X is compact and connected. But X has nontrivial fundamental group, so this
is a contradiction. Therefore, y /∈ C(x). Moreover, M(X) is the fraction field of C[x, y]
modulo some polynomial relation f(x, y) = 0, or equivalently, [1 : x : y] realizes X as the
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closure in P2
C of the curve defined by f(x, y) = 0. It remains only to show that f ∈ C[x, y]

has degree 3.
Since L(4D) has dimension 4 and (x2) = 2(x) ≥ −4D ∈ Div(X), we get {1, x, y, x2} as

a basis.
Since L(5D) has dimension 5 and (xy) = (x) + (y) ≥ −2D − 3D = −5D ∈ Div(X), we

get {1, x, y, x2, xy} as a basis.
Since L(6D) has dimension 6, any set of 7 elements in L(6D) is linearly dependent. But

1, x, y, x2, xy, x3, y2 ∈ L(6D) because (x3) = 3(x) ≥ −6D ∈ Div(X) and (y2) = 2(y) ≥
−6D ∈ Div(X). Since {1, x, y, x2, xy} is linearly independent, there must be some relation
among the functions 1, x, y, x2, xy, x3, y2 where the coefficients of x3 and y2 are both nonzero,
so x and y satisfy a cubic relation f(x, y) = 0.

In fact, with a little ingenuity it is possible to write down such meromorphic functions
explicitly as functions C → C ∪ {∞} which are periodic with respect to a given lattice Λ.
Consider the below function discovered by Weierstrass.

℘(z) =
1

z2
+

∑
λ∈Λr{0}

(
1

(z − λ)2
− 1

λ2

)

This is called the “Weierstrass P-function”. It is clear upon inspection that ℘(z+λ) = ℘(z)
for any z ∈ C and λ ∈ Λ, and so ℘ is periodic with respect to Λ. It is a little less trivial
to see that the expression for ℘(z) converges for every z ∈ C r Λ, and that in fact the
function ℘ is meromorphic, with poles of order 2 at every element of Λ. Therefore, ℘ can
also be considered as a function in M(X). We finally note that ℘ is an even function; i.e.
℘(−z) = ℘(z) for all z ∈ C. Therefore its derivative ℘′ is an odd meromorphic function on
C (i.e. ℘′(−z) = −℘′(z) for all z ∈ C) which is also periodic with respect to Λ (thus, it
may also be considered as a function in M(X)) and whose only poles are poles of order 3
at every element of Λ.

Proposition 2.4.2. The field M(X) of meromorphic functions on X is given by C(℘, ℘′).

Proof. We want to show that every meromorphic function on C which is periodic with respect
to the lattice Λ is a rational function of ℘ and ℘′. Now every meromorphic function is the
sum of an odd function and an even function each periodic with respect to Λ (easy exercise),
and every such odd function divided by the odd function ℘′ becomes an even function, so
it suffices to show that every even nonzero meromorphic function f on C which is periodic
with respect to Λ is a rational function of ℘.

Let (f) =
∑

P∈X nP (P ) ∈ Div(X) be the Weil divisor associated to f considered as a
function on X. We first note that for each P ∈ X, we have n−P = nP . Moreover, we claim
that if P ∈ X with P = −P , then nP is even. To prove this, let z ∈ C lie in the inverse
image of such a P under the map π : C � C/Λ = X (so 2z ∈ Λ), and let f (n) denote the
nth derivative of f for n ≥ 0. Then we check that f (i)(z) = f (i)(−z) = (−1)i−1f (i)(z), which
implies that f (i)(z) = 0 for i even. It follows that the order of f at z is even. Thus, the
divisor of f on X is given by

∑
P∈X nP (P ) + nP (−P ) ∈ Div(X) with nP ∈ Z almost all 0.
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Let D ⊂ C be a fundamental domain of the lattice Λ; that is, D+Λ = C and (D+λ)∩D =
∅ for any λ ∈ Λ (note that there is an obvious bijection between D and X). Let D′ ⊂ D
be a subset such that (D′ + Λ) ∪ (−D′ + Λ) = C and (D′ + Λ) ∩ (−D′ + Λ) = 1

2
Λ. Assume

that 0 ∈ D′ ⊂ D. Now consider the meromorphic function g on C given by

g(z) =
∏

w∈D′r{0}

(℘(z)− ℘(w))nπ(w) .

We check that for each z ∈ D′ r {0}, the divisor associated to ℘(z) − ℘(w) considered as
a function on X is (P ) + (−P ) − 2(0) ∈ Div(X). It follows that for each P ∈ X r 0, the
functions f and g have the same order; thus, when considered as functions in M(X), they
have the same associated divisor except possibly for the coefficient at 0 ∈ X. But then they
must have the same order at 0 as well, since (f/g) ∈ Div(X) is a principal divisor and must
have degree 0. So f/g has no zeros or poles on X and therefore must be a constant function
since X is compact. Thus, since g ∈ C(℘), we have f ∈ C(℘) as desired.

Corollary 2.4.3. a) The divisor (0) ∈ Div(X) is ample, and 3(0) ∈ Div(X) is very ample
(i.e. there is a basis of L(3(0)) which can be used to embed X into some projective space).

b) The imaginary part E of the positive definite Riemann form associated to the divisor
(0) ∈ Div(X) satisfies

√
det(E) = 1, so that it is given by E(λ1, λ2) = −1 for some (any)

basis {λ1, λ2} of Λ with =(λ2/λ1) > 0.
c) The set {1, ℘, ℘′} of meromorphic functions on C viewed as functions in M(X) is

a basis of L(3(0)), and the map [1 : ℘ : ℘′] : C → P2
C induces an embedding of X as the

projective curve in P2
C defined by a cubic relation f(℘, ℘′) = 0.

Proof. We already know that X has the structure of an projective curve over C, and Propo-
sition 2.4.2 tells us that the function field of the curve X is M(X) = C(℘, ℘′). Since the
function field of a complex curve must have transcendence degree 1 over C and ℘ and ℘′ are
obviously transcendental over C, it is then clear that there must be some algebraic relation
f(℘, ℘′) = 0. This means that X is the closure in projective space of the variety given by
the relation f(x, y) = 0, where x and y are the functions induced on X = C/Λ by ℘ and ℘′

respectively. Thus, [1 : ℘ : ℘′] induces an embedding X ↪→ P2
C.

Now x has a double pole at 0 ∈ X and no poles anywhere else while y has a triple pole
at 0 ∈ X and no poles anywhere else, so x, y ∈ L(3(0)). Then {1, x, y} can be extended to
a basis of L(3(0)) whose elements clearly induce an embedding of X into some projective
space, so the divisor 3(0) ∈ Div(X) is very ample and (0) ∈ Div(X) is ample, implying (a).

To prove part (b), we only need to show that the imaginary part E of the positive definite
Riemann form associated to the ample divisor (0) ∈ Div(X) satisfies

√
det(E) = 1, since

then it is easy to see that the only such E is defined as given in the statement. Lemma 2.3.4
tells us that dimC L((0)) =

√
det(E), and clearly every constant function lies in L((0)), so

it suffices to show that L((0)) = C. If a function g ∈ L((0)) has no pole at 0 ∈ X, then it
is holomorphic and therefore a constant function because X is compact. Thus, we assume
that there exists g ∈ L((0)) with a simple pole at 0 ∈ X and no poles anywhere else. Then
g : X → C ∪ {∞} is actually a degree-1 morphism X → P1

C and thus identifies X with
P1
C itself. This is a contradiction since X has nontrivial fundamental group, so we get the

desired statement.
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Now part (c) results from the same argument as in the proof of Proposition 2.4.1 (in fact,
x and y play the same roles as in that proof).

Again using a little ingenuity, it is possible to write down a cubic polynomial equation
relating ℘ and ℘′, whose existence is guaranteed by Corollary 2.4.3. For any k ∈ Z, define

G2k =
∑

λ∈Λr{0}

λ−2k.

One can show that this sum converges for any k ≥ 2. Then it is possible to show using
Laurent approximations of ℘ and ℘′ that the following relation holds:

f(℘, ℘′) := ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 ≡ 0. (2.19)

This is remarkable in showing that in fact, X can be viewed as the projective closure of a
variety given by a cubic equation of the rather simple form y2 = 4x3 +Bx+C for constants
B,C ∈ C. One checks easily that the identity element 0 ∈ X corresponds to the unique
point at infinity on this projective variety. We have now partially proven that Definition
1.1.1 implies Definition 1.1.4. That is, any complex abelian variety (in fact, any complex
torus!) of dimension one can be defined algebraically by a cubic polynomial of the form given
in Definition 1.1.4 (note that we can easily get rid of the “4” in the equation by scaling x
by 41/3 to get the equation in exactly the right form). We have not yet seen that the group
operation can be defined by the formula given in that definition, however.

2.5 Isogenies, polarizations, and duals

This subsection will provide only a brief introduction to the construction of duals in the world
of complex abelian varieties which should lend some intuition for some of the algebraic results
on elliptic curves that will come later.

2.5.1 Isogenies of complex abelian varieties

Definition 2.5.1. An isogeny of abelian varieties X1 and X2 of the same dimension is a
surjective morphism X1 → X2 which is a homomorphism of groups.

In order to understand isogenies of complex abelian varieties, the following proposition
is essential.

Proposition 2.5.2. For i = 1, 2, let Vi/Λi be a complex torus, where Vi is a complex vector
space and Λi ⊂ Vi is a lattice. Then any holomorphic homomorphism ϕ : V1/Λ1 → V2/Λ2

can be lifted to a unique C-linear map ϕ̃ : V1 → V2 satisfying ϕ̃(Λ1) ⊆ Λ2. Moreover, if ϕ is
an isogeny, then ϕ̃ is an isomorphism.

Proof. Recall that each quotient map Vi � Vi/Λi is homeomorphic onto its image when
restricted to a small enough open neighborhood of the identity 0 ∈ Vi. Then the proof is an
easy exercise in complex analysis.
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Corollary 2.5.3. Let X1 and X2 be abelian varieties of the same dimension, and let ϕ :
X1 → X2 be a morphism which is a homomorphism of groups. Then ϕ is an isogeny if and
only if it has finite kernel.

Proof. Suppose that ϕ is an isogeny. Then its lifting ϕ̃ is an isomorphism from the covering
space V1 of X1

∼= V1/Λ1 to the covering space V2 of X2
∼= V2/Λ2, so we may identify V1 and

V2 and consider ϕ̃ to be an automorphism of a vector space V such that ϕ̃(Λ1) ⊆ Λ2, where
Λ1 and Λ2 are rank-2g lattices in V . Then to prove the claim, it suffices to show that the
quotient Λ2/ϕ̃(Λ1) is finite. But since ϕ̃ is an R-linear isomorphism, the lattice ϕ̃(Λ1) has
rank 2g, as does Λ2, and so the induced quotient is finite.

Now suppose that ϕ is not an isogeny – that is, ϕ is not surjective. Then clearly ϕ̃ is not
a surjection onto V2. Since V1 and V2 have the same dimension, this implies that ϕ̃ is not
injective either, so that ker(ϕ̃) ⊆ V1 is a subspace of positive dimension. Since Λ1 ⊂ V1 is
discrete, the image of ker(ϕ̃) in X1 is positive-dimensional and in particular not finite. Since
this is contained in the kernel of ϕ, we see that ϕ does not have finite kernel.

The above corollary gives an equivalent definition of “isogeny” which is used in many
texts. In the case of elliptic curves, the “surjection” and “finite kernel” conditions are also
equivalent to the condition that the homomorphism is nontrivial. (Actually, Silverman’s book
[8] includes the trivial map as an isogeny between elliptic curves, but this is inconsistent with
our definition and most definitions of the term.)

Corollary 2.5.4. Let X be a complex abelian variety, and let N be a finite subgroup of X.
Then there exists a complex abelian variety X ′ and an isogeny ϕ : X → X ′ whose kernel is
N , so that X ′ ∼= X/N . The isogeny ϕ is unique up to automorphism of X ′.

Proof. The inverse image of N under V � V/Λ ∼= X is a lattice Λ′ ⊂ V which contains Λ.
If we let X ′ = V/Λ′, it is clear that the identity automorphism on V induces a surjective
map ϕ : X → X ′ whose kernel coincides with N . The uniqueness up to automorphism is
clear from considering the liftings of two such isogenies X → X ′ to automorphisms of V . In
order to show that X ′ also has the structure of abelian variety, it is enough to find a positive
definite Riemann form for X ′. It is easy to check that if H : V ×V → C is a positive definite
Riemann form with respect to Λ and n = [Λ′ : Λ] is the degree of ϕ, then n2H is a positive
definite Riemann form with respect to 1

n
Λ. Since clearly Λ′ ⊆ 1

n
Λ, we are done.

Definition 2.5.5. The degree of an isogeny ϕ : X1 → X2 is the order of its kernel.

We now briefly discuss the most important example of an isogeny.

Example 2.5.6. If X is a complex abelian variety of dimension g, then Corollary 2.1.4 says
that the multiplication-by-n map [n] : X → X is surjective, and that it has finite kernel
isomorphic to (Z/nZ)2g, for any integer n ≥ 1. Therefore, [n] is an isogeny of degree n2g.

Proposition 2.5.7. Let ϕ : X1 → X2 be an isogeny of degree n of complex abelian varieties
of dimension g. Then there is an isogeny ϕ′ : X2 → X1 of degree n2g−1 such that ϕ′ ◦ ϕ and
ϕ ◦ ϕ′ are the multiplication-by-n maps [n]X1 and [n]X2 on X1 and X2 respectively.
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Proof. We again identify the covering spaces of X1 and X2, so that X1 = V/Λ1 and X2 =
V/Λ2 for a g-dimensional complex vector space V and rank-2g lattices Λ1 ⊆ Λ2 ⊂ V . Let
X1[n] denote the kernel of the multiplication-by-n map X1 → X1. Then the inverse image of
X1[n] under V � V/Λ1

∼= X1 clearly coincides with 1
n
Λ1. It is easy to see that we have the

inclusions of lattices Λ1 ⊆ Λ2 ⊆ 1
n
Λ1. Then N ′ := 1

n
Λ1/Λ2 has order n2g−1, and by Corollary

2.5.4, there is an abelian variety X3 and an isogeny ϕ′ : X2 → X3 with kernel N ′. But
clearly X3 = V/ 1

n
Λ1, which is isomorphic to X/Λ1 via the multiplication-by-n homothety on

V , so ϕ′ : X2 → X1 is an isogeny of degree n2g−1. Moreover, the kernel of ϕ′ ◦ ϕ : X1 → X1

is 1
n
Λ1/Λ1

∼= X1[n]. Since the multiplication-by-n map [n]X1 : X1 → X1 has this kernel,
by the uniqueness given in the statement of Corollary 2.5.4, after composing ϕ′ with an
automorphism of X1 we can assume that ϕ′ ◦ ϕ = [n]X1 . The claim that ϕ ◦ ϕ′ = [n]X2 now
follows from a similar argument.

Remark 2.5.8. The above proposition shows that if X1 and X2 are abelian varieties with
an isogeny X1 → X2, then there is also an isogeny from X2 to X1. Therefore, it makes sense
to simply say “X1 and X2 are isogenous”, with “isogenous” being an equivalence relation.

2.5.2 Polarizations of complex abelian varieties

We will define a particular type of holomorphic homomorphism ϕ from a complex abelian
variety X to another complex torus X∨, and we will prove that X∨ is also an abelian variety
and ϕ is an isogeny. In order to do this, we first need to further develop the theory of
Riemann forms associated to divisors on X; for this purpose, we will only assume for the
moment that X is a complex torus which is not necessarily an abelian variety.

In §2.2 we constructed a homomorphism H from Div(X) to the group of Hermitian forms
on the covering space V (and we showed that in fact, the image coincides with the group
of Riemann form for X). We shall take this notion further. We first observe that the set
of normalized theta functions is closed under multiplication, and in fact, θDθD′ = θD+D′ for
any divisors D,D′ ∈ Div(X). Thus, D 7→ θD defines a homomorphism from Div(X) to the
group of theta functions. Moreover, if we associate to each normalized theta function θD the
corresponding Riemann form H : V × V → C and map K : Λ → R as in the statement of
Proposition 2.2.8, we see that this association respects addition of divisors in Div(X). In
other words, the map Φ : D 7→ (HD, KD), where HD : V × V → C and KD : Λ→ R are the
Riemann form and map associated to θD, defines a homomorphism

Div(X)→ {additive group of Herm. forms V ×V → C}×{additive group of maps Λ→ R}.

The kernel of Φ is the subgroup of principle divisors Prin(X) ⊂ Div(X), because a normalized
theta function θD has trivial H and K if and only if θD is periodic with respect to Λ ⊂ V ,
which means that it induces a meromorphic function on X whose associated divisor is D.

Since H is simply the composition of Φ with the projection to the group of Riemann
forms on V , its kernel is some subgroup of Div(X) containing Prin(X). We let Div0(X)
denote this kernel; in other words, Div0(X) ⊂ Div(X) is the subgroup of all divisors whose
associated Riemann form is 0. We let Pic(X) := Div(X)/Prin(X) denote the Picard group
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of X and write Pic0(X) for the subgroup Div0(X)/Prin(X). From now on, we consider Φ
as a homomorphism on Pic(X) (whose kernel is Pic0(X)).

Note that Φ associates to each divisor class [D] ∈ Pic0 ⊆ Pic(X) a map K : Λ → R
which satisfies the property that K(λ1 + λ2) − K(λ1) − K(λ2) ≡ 1

2
E(λ1, λ2) = 0 modulo

Z, so that θD(v + λ)/θD(v) = e2πiK(λ) is actually a group homomorphism Λ → C× which
does not depend our choice of a fixed v ∈ V . In other words, for [D] ∈ Pic0(X) and
K : Λ→ R the associated map, the function λ 7→ e2πiK(λ) is a complex character χ[D] on Λ.
It is easy to check that χ[D1+D2] = χ[D1]χ[D2] for D1, D2 ∈ Div(X), so Φ induces an injective
homomorphism from Pic0(X) to the group of complex characters on Λ (we will soon see that
this is an isomorphism. A “complex character” is understood by definition to take values in
the unit circle.)

Now in order to define a polarization, for any a ∈ X, we denote the translation-by-a
morphism taking b ∈ X to b + a by ta : X → X. It induces an pullback automorphism
t∗a : Div(X) → Div(X). Note that t∗a stabilizes Prin(X) (for any (f) ∈ Prin(X), check that
t∗a(f) = (f ◦ ta)), so it may be considered as an automorphism of Pic(X) as well.

Definition 2.5.9. A polarization is a map X → Pic(X) of the form

ϕD : a 7→ [t∗−aD −D]

for some ample divisor D ∈ Div(X).

Remark 2.5.10. This definition as well as the results below would all still be valid with
“a” in place of “−a” above, but we include the minus sign in order to get a nicer description
of principal polarizations on elliptic curves later.

2.5.3 The dual of a complex abelian variety

Our main goal now is to show that Pic0(X) has the structure of a complex abelian variety
and that any polarization ϕD is an isogeny. We will first show that a polarization is surjective
with finite kernel. In order to show this, we need a lemma.

Lemma 2.5.11. For any D ∈ Div(X) and a ∈ X, we have the following.
a) The divisor t∗aD − D lies in Div0(X); therefore, the image of any polarization is

contained in Pic0(X).
b) Under the homomorphism from Pic0(X) to the group of complex characters on Λ

defined above, [t∗aD−D] goes to the character λ 7→ e2πiE(w,λ), where E is the imaginary part
of the Riemann form associated to D and w is some (any) element of V whose image modulo
Λ is a ∈ X ∼= V/Λ.

Proof. Let H : V × V → C be the Riemann form and K : Λ → R be the map such that
Φ(D) = (H,K). Fix a point w ∈ V whose image modulo Λ is a ∈ X. Let θD be a normalized
theta function for D. Then it is clear that θ′ := (θD ◦ tw) = π∗t∗aD, where tw : V → V is the
translation-by-w function on V . For v ∈ V and λ ∈ Λ, we compute

θ′(v + λ)/θ′(v) = eπH(w+v,λ)+ 1
2
H(λ,λ)+2πiK(λ). (2.20)

22



Let θ′′(v) = e−πH(v,w)θ′(v), which is a theta function with the same divisor as θ′ since
v 7→ e−πH(v,w) is a trivial theta function. This contributes a factor of e−πH(λ,w) to the
functional equation above, so that now we have, for v ∈ V and λ ∈ Λ,

θ′′(v + λ)/θ′′(v) = e2πi( 1
2i
H(v+w,λ)+ 1

4i
H(λ,λ)+K(λ)− 1

2i
H(λ,w)

= e2πi( 1
2i
H(w,λ)− 1

2i
H(λ,w) · e2πi( 1

2i
H(v,λ)+ 1

4i
H(λ,λ)+K(λ)

= e2πiE(w,λ) · e2πi( 1
2i
H(v,λ)+ 1

4i
H(λ,λ)+K(λ) = e2πiE(w,λ) · θD(v + λ)/θD(v). (2.21)

Therefore we see that θ′′/θD is a normalized theta function with (θ′′/θD) = π∗(t∗aD −D) ∈
Div(V ), so θ′′/θD = θt∗aD−D. Moreover, we have θt∗aD−D(v + λ)/θt∗aD−D(v) = e2πiE(w,λ) for
v ∈ V and λ ∈ Λ, and so the associated Riemann form is 0 while the associated map
Λ → R is λ 7→ E(w, λ) (note that this is independent modulo Z of our choice of w since
E(Λ,Λ) ⊆ Z). Then (a) and (b) both follow from the definition of Div0(X) and constructions
in the discussion above.

We will now, for the rest of this section, assume that X is an abelian variety (so X has
an ample divisor).

Proposition 2.5.12. Let ϕD : X → Pic0(X) be a polarization as defined in Definition 2.5.9,
where D ∈ Div(X) is an ample divisor. Then ϕD is a surjective homomorphism of abstract
groups with kernel of order det(E), where E is the imaginary part of the Riemann form
associated to D. Moreover, the injection of Pic0(X) into the group of complex characters of
Λ given by D 7→ χD as constructed above is an isomorphism.

Proof. We first observe that any complex character χ : Λ → C∗ must be of the form λ 7→
e2πiB(λ) for some R-linear function B : Λ → R. Meanwhile, by Proposition 2.3.2, since D
is ample, the R-bilinear form E : V × V → R is nondegenerate. Therefore, any R-linear
function B : Λ → R is given by E(w, ·) for some w ∈ V . We therefore have χD = e2πiE(w,·)

for some w ∈ V , and it follows from Lemma 2.5.11(b) that ϕD(−a) = D for any divisor class
D ∈ Pic0(X), where a = π(w). Thus, D 7→ χD is actually an isomorphism from Pic0(X) to
the group of complex characters on Λ, and ϕD is a surjective map. The fact that ϕD is also
a group homomorphism follows easily from our formula χϕD(a) = e2πiE(w,·).

It is now clear that the kernel of ϕD consists of the images modulo Λ of elements w ∈ V
with e2πiE(w,λ) = 1 and thus E(w, λ) ∈ Z for all λ ∈ Λ. It follows quickly from Lemma
2.3.4(a) that the subset Λ′ ⊂ V consisting of all such w is a lattice containing Λ such that
the quotient Λ′/Λ has order det(E).

The next proposition shows that Pic0(X) is not only a complex torus but a complex
abelian variety.

Proposition 2.5.13. Let V ∗ be the complex vector space of all C-antilinear functions ξ :
V → C, and let Λ∗ be the subset of all ξ ∈ V ∗ satisfying =ξ(Λ) ⊆ Z. Then Λ∗ is a lattice
of maximal rank in V ∗, and there is a canonical isomorphism of groups Pic0(X)

∼→ V ∗/Λ∗,
thus giving Pic0(X) the structure of a complex torus. Moreover, Pic0(X) ∼= V ∗/Λ∗ has a
positive definite Riemann form and is therefore an abelian variety by Theorem 2.3.6.
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Proof. It is an elementary exercise to check that V ∗ and Λ∗ have the same dimension and
rank as V and Λ respectively, so that V ∗/Λ∗ is a complex torus. Fix an ample divisor
D ∈ Div(X), and let E be the imaginary part of its associated Riemann form. Now we
have already shown that Pic0(X) is isomorphic to the group of complex characters on Λ,
each of which is of the form λ 7→ e2πiB(λ) for some R-linear function B : V → R. Since for
such a B there always exists a C-antilinear function on V whose imaginary part is −B (take
B(iv) − iB(v)), we get a surjection V ∗ � Pic0(X) given by ξ 7→ e−2πi=ξ(·) whose kernel is
clearly Λ∗. Note that if w ∈ V is an element such that B(·) ≡ E(w, ·) modulo Z, then we
have B(iv) − iB(v) = E(−iw, ·) − iE(w, ·) = H(−w, ·). It now follows from what we have
shown before that the map ϕD : X → Pic0(X)

∼→ V ∗/Λ∗ is given by

a 7→ t∗−aD −D 7→ H(w, ·) + Λ∗ ∈ V ∗/Λ∗,

where w is some (any) element of V mapping to a ∈ X. Therefore, it lifts to the isomorphism
ϕ̃D : V

∼→ V ∗ given by w 7→ H(w, ·) ∈ V ∗. Note that ϕ̃D(Λ) ⊆ Λ∗ is a sublattice of (finite)
index equal to the order of ker(ϕD), which is det(E), implying that Λ ⊆ Λ∗ ⊆ 1

det(E)
ϕ̃D(Λ).

Now define H∗ : V ∗ × V ∗ → C by H∗(ξ1, ξ2) = H(ϕ̃D
−1(ξ1), ϕ̃D

−1(ξ2)). It is immediate
to check that H∗ is a positive definite Riemann form on V ∗ with H∗(ϕ̃D(Λ), ϕ̃D(Λ)) ⊆
Z. Therefore, we have H∗(Λ∗,Λ∗) ⊆ det(E)−2Z, so that det(E)2H∗ is a positive definite
Riemann form for V ∗/Λ∗.

We denote the group Pic0(X) with its structure as an abelian variety by X∨ and call it
the dual abelian variety of X. Any polarization ϕD : X → X∨ is an isogeny of degree det(E)
(note that this is always a perfect square). If there exists an ample divisor D ∈ Div(X)
whose associated Riemann form satisfies det(E) = 1, then this isogeny is an isomorphism
ϕD : X

∼→ X∨. In this case, we say that ϕD is a principal polarization and that X is “self-
dual”. It is not too deep to show that there is always a natural isomorphism (X∨)∨

∼→ X,
as one expects, but we will not do it here.

Remark 2.5.14. For any complex torus X (even one which is not an abelian variety), what
we have shown implies that Pic0(X) still has the structure of a complex torus, called the dual
complex torus of X. This intuitively makes sense if one identifies Pic0(X) with the group of
complex characters on X as above. (Note in particular that as a real Lie group, X ∼= (R/Z)2g

and a complex character on X is a homomorphism of real Lie groups χ : Z2g → R/Z which
lifts to an R-linear functional χ̃ : R2g → R which is unique up to functionals which take
values in Z on the standard basis of R2g.)

However, we need an ample divisor D with a positive definite Riemann form H in order
to construct a positive definite Riemann form on the dual complex torus, as well as to get a
map ϕD which is surjective.

2.5.4 Polarizations and self-duality of elliptic curves

We now apply the theory of polarizations to the elliptic curve case. Assume now that X has
dimension 1. Then we know from Corollary 2.4.3 that the divisor (0) ∈ Div(X) is ample
and that the associated Riemann form is positive definite and satisfies det(E) = 1. Thus,
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ϕ(0) : X → X∨, defined using the above notation, is a principal polarization and so X ∼= X∨

is self-dual. Explicitly, ϕ(0) is given by P 7→ [(P ) − (0)] ∈ Pic0(X). We will see this map
again in other contexts. (This is the reason for the minus sign in Definition 2.5.9.)

We also get a simple description of Div0(X) as well as of ample divisors on X in the
elliptic curve case.

Proposition 2.5.15. If X is an elliptic curve, then Div0(X) ⊂ Div(X) coincides with the
subgroup of divisors of degree 0. Moreover, a divisor on X is ample if and only if it has
positive degree.

Proof. The subgroup of divisors of degree 0 is generated by divisors of the form (P ) −
(0) ∈ Div(X) for a point P ∈ X. But (P ) − (0) = t∗−P (0) − (0) ∈ Div0(X) by Lemma
2.5.11. Therefore, any two divisors in Div(X) with the same degree have the same associated
Riemann form. Let H be the positive definite Riemann form associated to the ample divisor
(0) ∈ Div(X). For any divisor D ∈ Div(X) with deg(D) = n, the divisors D and n(0)
have the same associated Riemann form, which is nH. Since nH = 0 (resp. nH is positive
definite) if and only if n = 0 (resp. n ≥ 1), we get both claims of the proposition.

2.6 Jacobians of compact Riemann surfaces

In this section we discuss the classical theory which first led to the discovery of elliptic curves
and abelian varieties over C in the early 19th century. Given any given compact Riemann
surface C of genus g, we will construct a complex abelian variety J of dimension g called
the Jacobian of C, which as an abstract group is isomorphic to Pic0(C). This will help to
provide some more concrete examples of complex abelian varieties of dimension ≥ 2 as well
as a deeper understanding of complex elliptic curves.

Throughout this section, we will resume the same notation of Div(C) (group of Weil
divisors), Div0(C) (subgroup of degree-0 divisors), Prin(C), Pic(C), Pic0(C), etc. exactly as
they were defined for elliptic curves in §2.4.

2.6.1 Differential forms and the Riemann-Roch theorem

Since we will only be dealing with differential forms on smooth curves, we will follow the
definition of Silverman: the complex vector space of differential forms on a complex curve
C, denoted Ω(C), is the set of all symbols df for any f in the field of meromorphic functions
M(C) satisfying the following relations: d(f + g) = df + dg; d(cf) = c(df); and d(fg) =
f(dg) + g(df) for any f, g ∈M(C) and c ∈ C.

It is easy to show that if ω1, ω2 ∈ Ω(C), then ω2 = fω1 for some unique f ∈ M(C),
so Ω(C) may also be viewed as a 1-dimensional M(C)-vector space. This fact enables us
to define the order of a differential form at any point on the curve. Given any differential
form ω ∈ Ω(C) and any point P ∈ C, the order of ω at P is the order of the function
ω/dt ∈ M(C) at P , where t ∈ M(C) is some (any) uniformizer at P . So there is a divisor
associated to each differential form ω ∈ Ω(C), denoted (ω) ∈ Div(C), given by

∑
P∈C nP (P )

where each nP is the order of ω at P . In fact, for ω1, ω2 ∈ Ω(C), if we let f = ω2/ω1 ∈M(C),
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then we see that (ω2) = (ω1) + (f) ∈ Div(C), so the divisors of all differential forms on C lie
in the same divisor class in Pic(C). We denote this divisor class by [K] ∈ Pic(C) and call
any representative K ∈ Div(C) a canonical divisor of C.

The algebraic definition of the genus of a curve is the dimension over C of the vector
space of all holomorphic differential forms on C (differential forms whose associated divisor
is positive; we will see from the Riemann-Roch theorem below that this dimension is always
finite). One can show, by taking triangulations and computing Euler characteristics, that
this definition of “genus” agrees with the topological definition, where the genus of a compact
Riemann surface is the “number of holes”.

Example 2.6.1. (hyperelliptic curves)
We define a hyperelliptic curve over C to be a smooth projective curve defined by an

equation of the form y2 = f(x) for some polynomial f ∈ C[x] of degree d ≥ 1 which has
d distinct roots. If d is odd, then there will be one added “point at infinity” ∞, and if
d is even, there will be two added “points at infinity” denoted ∞1 and ∞2. Note that a
hyperelliptic curve is a conic if d = 1, 2, and an elliptic curve is a hyperelliptic curve for
d = 3 by Definition 1.1.4. (In fact, we will see below that the genus of a hyperelliptic curve
C of degree d = 4 is 1, and so by Definition 1.1.3, such a curve C with a distinguished point
is also an elliptic curve.)

In order to visualize C as a complex manifold, we consider the function x 7→ y =
√
f(x)

on the Riemann sphere C∪{∞}. In fact,
√
f(x) can’t be defined as a meromorphic function

on the Riemann sphere, but it can be defined on the compliment of some branch cuts which
connect the zeroes of the polynomial f . Define the subset B ⊂ C ∪ {∞}, called the subset
of branch points, to be the set of roots of f if d is even, and let B ⊂ C ∪ {∞} be the set of
roots of f along with the point ∞ if d is odd (note that the cardinality of B is always even
and equal to either d or d+ 1). We partition B into cardinality-2 subsets and for each such
subset draw a line connecting the corresponding two points in B, so that none of the #B/2
lines intersect. Then there is a well-defined meromorphic function

√
f(x) whose square is

f(x) defined on the compliment of these branch cuts. Of course, −
√
f(x) is another such

function. With a little visual intuition, one can see that the Riemann surface defined by the
equation y2 = f(x) can be constructed by taking two copies of the Riemann sphere, one on
which y takes the value

√
f(x) and the other on which y takes the value −

√
f(x), “opening”

their branch cuts, and gluing them together along their opened branch cuts. Since each copy
of the Riemann sphere had #B/2 branch cuts, the resulting Riemann surface has #B/2− 1
holes. Since #B ∈ {d, d+ 1}, it follows that the genus of C is equal to b(d− 1)/2c.

We can show that this agrees with the algebraic definition of genus as follows. One can
compute that the differential form dx/y ∈ Ω(C) has associated divisor (d− 3)(∞) ∈ Div(C)
(resp. (d/2 − 2)(∞1) + (d/2 − 2)(∞2) ∈ Div(C)) if d is odd (resp. if d is even). Moreover,
one can compute that a nonzero polynomial function h ∈ C[x] ⊂ M(C) of degree d′ ≥ 0
has only a pole at ∞ of order 2d′ (resp. only poles at ∞1 and ∞2, each of order d′) if d is
odd (resp. if d is even). Thus, the space of all holomorphic differentials on C consists of all
differentials of the form h · dx/y where h ∈ C[x] ⊂M(C) is a polynomial function of degree
d′ ≤ b(d− 1)/2c− 1, which has dimension b(d− 1)/2c. Thus, again we see that the genus of
C is equal to g := b(d− 1)/2c. So if a hyperelliptic curve has genus g, then the polynomial
f used to define it has degree 2g + 1 or 2g + 2, and there are always 2g + 2 branch points.

26



In fact, we may easily describe a basis for the singular homology of C as follows. Order
the points in B as {z1, z2, ..., z2g+2} so that the jth branch cut connects the point z2i−1 to z2i

for 1 ≤ i ≤ g+ 1. Let āi (resp. b̄i) be a simple closed loop surrounding only the points z2i−1

and z2i (resp. the points z2i, z2i+1, ..., z2g+1) for 1 ≤ i ≤ g. Then the āi’s and b̄i’s lift to simple
closed loops ai and bi on the compact Riemann surface C. This set of loops is a basis for the
homology group H1(C,Z), which is a free abelian group generated by {a1, ..., ag, b1, ..., bg}.

Note that the case of d = 3 shows that an elliptic curve given by y2 = f(x) as in Definition
1.1.4 always has genus 1, and its only holomorphic differentials are constant multiples of dx/y.
In fact, these holomorphic differentials have trivial associated divisor, so that the class of
canonical divisors for an elliptic curve C is [K] = 0 ∈ Div(C). Recall that an elliptic curve
of this form can be identified with C/Λ for some rank-2 lattice Λ ⊂ C, and that there is
a periodic function ℘ defined on C inducing x ∈ M(C) such that its derivative ℘′ induces
y ∈M(C). Then note that the differential form dx/y ∈ Ω(C) lifts to ℘′dz/℘′ = dz ∈ Ω(C),
and clearly the only holomorphic differentials on C are constant multiples of dz (which has
trivial divisor). Any constant multiple of dx/y is called an invariant differential of the elliptic
curve C and will be important later.

The curious reader may find more details in [6, §1].

The Riemann-Roch theorem gives a formula which can be used to compute (among other
things) the dimension of the vector space L(D) for any divisor D on a compact smooth curve
C. From now on, for any divisor D ∈ Div(C), we define l(D) to be the dimension of the
vector space L(D). Note that l(D) does not depend on the choice of representative D of the
divisor class [D] ∈ Pic(C).

Theorem 2.6.2. (Riemann-Roch)
For any divisor D ∈ Div(C) and canonical divisor K of C, there is an integer g ≥ 0

which depends only on C, such that

deg(D) = l(D)− l(K −D) + g − 1.

This is a standard theorem in algebraic geometry, and we do not prove it in these notes.
A proof can be found in [2, §2].

Corollary 2.6.3.
a) The constant g given in the statement of Theorem 2.6.2 is the genus of C.
b) The degree of any canonical divisor of C is 2g − 2.

Proof. First we observe that there is an isomorphism from the vector space of holomorphic
differentials on C to L(K), given by ω 7→ ω/ω0 for some ω0 ∈ Ω(C) such that (ω0) = K ∈
Div(C). Thus, the genus of C is equal to l(K).

Part (a) is proven by putting D = 0 into the formula given by Theorem 2.6.2. Then part
(b) is proven by instead putting D = K into that formula.

The following corollary is useful in proving the Abel-Jacobi theorem below.

Corollary 2.6.4. Let O ∈ C be an arbitrary point. Then each divisor class in Pic0(C) can
be represented by a divisor of the form

∑g
i=1 ni(Pi) − g(O) for some points Pi ∈ C (not

necessarily distinct) and integers ni.
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Proof. Choose any divisor D ∈ Div0(C). We deduce from Theorem 2.6.2 that `(D+g(O)) =
g+`(K−(D+g(O)))−g+1 ≥ 1, so there is a nonzero meromorphic function h ∈ L(D+g(O)).
Then we have D′ := D + (h) > −g(O), so D′ is a divisor of the desired form which lies in
the same class as D in Pic0(C).

2.6.2 The Abel-Jacobi map

The singular homology group H1(C,Z) of our compact genus-g Riemann surface C is freely
generated by a cardinality-2g set {a1, ..., ag, b1, ..., bg} of simple closed loops which look ex-
actly like the loops explicitly constructed in the case that C is a hyperelliptic curve (Example
2.6.1). In fact, as a topological space, C may be constructed by taking a 4g-sided polygon,
called a fundamental polygon of C and denoted by P , and identifying the sides by considering
each one as a loop in H1(C,Z) in the order {a1, b1,−a1,−b1, ..., ag, bg,−ag,−bg}. Now choose
a basis {ω1, ..., ωg} of the g-dimensional vector space of holomorphic differential forms on C.

The Abel-Jacobi theorem arose from attempts to calculate integrals of certain differential
forms along paths on hyperelliptic curves. As we know from complex analysis, such a path
integral is only well-defined up to integrals along closed loops in the homology group: in
general, an integral of a differential form along a nontrivial closed loop will not equal 0. Let
Λ ∈ Cg be the additive subgroup generated by{(∫

ai

ω1, ...,

∫
ai

ωg

)
,

(∫
bi

ω1, ...,

∫
bi

ωg

)
}1≤i≤g

}
⊂ Cg.

(We will later show that Λ is a rank-2g lattice.)
Now we define the Abel-Jacobi map as follows. Fix a point O ∈ C. Now for any point

P ∈ C, path integrals of the form
∫ P
O
ω for some holomorphic differential form ω ∈ Ω(C) are

not well-defined, because composing any path from O to P with a nontrivial closed loop of
base O may change the value of the integral. However, if we let AJ (named after Abel and
Jacobi) be the function on C given by

P 7→
(∫ P

O

ω1, ...,

∫ P

O

ωg

)
,

we see that this takes values in Cg determined up to elements of Λ. Thus, AJ : C → Cg/Λ is
a well-defined function, which can be extended Z-linearly to a function AJ : Div(C)→ Cg/Λ.

Remark 2.6.5. In the case that C is an elliptic curve given by an equation of the form
y2 = f(x) where f ∈ C[x] is a cubic polynomial in x, we have already seen from Example
2.6.1 that all holomorphic differentials in Ω(C) are of scalar multiples of dx/y. In this case,
the map AJ : C → C/Λ is a biholomorphism (see Exercise 2.7.8) which is essentially an
inverse to the map C→ C given by z 7→ (℘(z), ℘′(z)).

In fact, this entire area of mathematics first came to light when mathematicians in the
early 1800’s were attempting to solve integrals of the form

∫
dx/
√
f(x) with f(x) a cubic.

Such integrals naturally came up in calculations of the arclegnth of an ellipse and were
therefore called “elliptic integrals”. Researchers soon realized that functions like 1/

√
f(x)
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could not be defined everywhere on the complex plane and path integrals of them should
instead by studied on the curve given by y2 = f(x), and that is why this curve was called
an “elliptic curve”.

Definition 2.6.6. The Jacobian of a compact Riemann surface C of genus g is the g-
dimensional complex manifold J := Cg/Λ.

The function AJ : Div(C) → J is called the Abel-Jacobi map. One easily verifies that
when restricted to Div0(C), this map does not depend on our choice of basepoint O ∈ C.
From now on we will mainly consider the Abel-Jacobi map restricted to Div0(C). We are
finally ready to present the Abel-Jacobi Theorem, which will be proven in the next two
subsections.

Theorem 2.6.7. (Abel-Jacobi)
(Abel) The kernel of the map AJ : Div0(C)→ J coincides with the subgroup of principal

divisors Prin(C) ⊆ Div0(C).
(Jacobi) The map AJ is surjective.
Thus, the Abel-Jacobi map induces an isomorphism of abstract groups Pic0(C)

∼→ J .

2.6.3 Proof of Abel’s Theorem

Our goal in this section is to prove Abel’s part of Theorem 2.6.7, which is that the kernel
of the Abel-Jacobi map coincides with Prin(C) ⊆ Div0(C). For the proof, we fix a funda-
mental polygon P of C which contains O in its interior, whose sides form a homology basis
{a1, ..., ag, b1, ..., bg} as in §2.6.2. We first need some lemmas.

Lemma 2.6.8. Let ω and η be two differential forms on C. Then we have the identities∫
C

ω ∧ η =

∫
∂P
Fη =

g∑
i=1

(∫
ai

ω

∫
bi

η −
∫
ai

η

∫
bi

ω

)
,

where F (P ) is defined to be the integral
∫ P
O
ω along any path from O to P contained in the

interior of the polygon P described at the start of §2.6.2.

Proof. The first equality is Stokes’ Theorem. To prove the second equality, we first note that∫
∂P
Fη =

g∑
i=1

(∫
ai

Fη +

∫
−ai

Fη +

∫
bi

Fη +

∫
−bi

Fη,

)
(2.22)

where the ai’s, −ai’s, bi’s, and −bi’s are the edges of the polygon P . We note from the
configuration of the edges of P as described above that for each i, we have∫

ai

Fη +

∫
−ai

Fη =

∫
ai

(∫ P

O

ω

)
η −

∫
ai

(∫ P̄

O

ω

)
η =

∫
ai

(∫ P

P̄

ω

)
η, (2.23)

29



where P̄ is the point which is identified with P along the identification of the side ai with
the side −ai. Recall that the edge of P bridging ai and −ai is bi; let R (resp. R̄) denote the
endpoint connecting bi to ai (resp. −ai). Then we have∫ P

P̄

ω =

∫ R̄

P̄

ω +

∫ R

R̄

ω +

∫ P

R

ω = −
∫ P

R

ω −
∫
bi

ω +

∫ P

R

ω = −
∫
bi

ω. (2.24)

It follows that we have∫
ai

Fη +

∫
−ai

Fη =

∫
ai

(
−
∫
bi

ω

)
η = −

∫
ai

η

∫
bi

ω. (2.25)

A similar reasoning (keeping in mind that the edge of P bridging bi and −bi is −ai) yields∫
bi
Fη+

∫
−bi Fη =

∫
bi
η
∫
ai
ω. Putting these relations into (2.22), we get the desired formula.

Corollary 2.6.9. The set of vectors {(
∫
ai
ω1, ...,

∫
ai
ωg)}1≤i≤g ⊂ Cg is linearly independent

over C and thus spans Cg.

Proof. The claim is equivalent to the statement that if ω ∈ Ω(C) is a holomorphic differential
form with

∫
ai
ω = 0 for 1 ≤ i ≤ g then ω = 0. Suppose that ω ∈ Ω(C) is a holomorphic

differential satisfying this hypothesis. Then, writing ω̄ for the complex conjugate of ω,
Lemma 2.6.8 yields ∫

C

ω ∧ ω̄ =

g∑
i=1

(∫
ai

ω

∫
bi

ω̄ −
∫
bi

ω

∫
ai

ω̄

)
= 0. (2.26)

This implies that ω = 0 as desired, since it is fairly intuitive to verify using local charts that∫
C
ω ∧ ω̄ 6= 0 if and only if ω 6= 0.

Note that we may use Lemma 2.6.8 to “normalize” our basis {ω1, ..., ωg} so that
∫
aj
ωi =

δi,j for 1 ≤ i, j ≤ g. From now on, we will assume that our basis of holomorphic differentials
satisfies this property. We write Π for the g × g matrix given by Πi,j =

∫
bj
ωi; we observe

that now our lattice Λ is generated by Zg and the columns of Π, so Λ = Zg + ΠZg. We now
note that Π is symmetric (this is the first of what are called “Riemann’s relations”).

Corollary 2.6.10. The matrix Π is symmetric; that is,
∫
bj
ωi =

∫
bi
ωj for 1 ≤ i, j ≤ g.

Proof. It is clear that since ωi and ωj are both holomorphic and therefore one is a meromor-
phic function times the other, we have ωi ∧ ωj = 0. Then Lemma 2.6.8 gives us

0 =

∫
C

ωi ∧ ωj =

g∑
k=1

(∫
ak

ωi

∫
bk

ωj −
∫
ak

ωj

∫
bk

ωi

)
=

∫
bi

ωj −
∫
bj

ωi. (2.27)
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Lemma 2.6.11. For any degree-0 divisor of the form D :=
∑

P∈C nP (P ) ∈ Div0(C), there
is a differential form ωD ∈ Ω(C) whose only poles are simple poles with residue nP at each
point P ∈ C such that nP 6= 0. We may further guarantee that ωD satisfies

∫
ai
ωD = 0 for

1 ≤ i ≤ g (this uniquely determines ωD).

Proof. It is clear that since Div0(C) is generated by divisors of the form (P )− (Q) for points
P,Q ∈ Div0(C), it suffices to prove this claim for (P )− (Q). It suffices to show the existence
of a differential form ω 6= 0 whose only poles are a simple pole at P (with residue 1) and a
simple pole at Q (with residue −1). One checks that the space of all differential forms whose
only poles are possibly simple poles at P and Q is isomorphic to L(K + P + Q). Putting
D = −P −Q into the formula given in Theorem 2.6.2 gives

deg(−P −Q) = l(−P −Q)− l(K+P +Q)+g−1⇒ −2 = 0− l(K+P +Q)+g−1, (2.28)

so l(K + P + Q) = g + 1 and there exists a function in L(K + P + Q) r L(K) and thus a
differential form ωD which is not holomorphic but whose only poles are simple poles at P
and/or Q. Because the sum of the residues of a differential form must be 0, we know that
this ωD must have simple poles at both P and Q with opposite residues. After scaling by a
suitable constant, we may assume that the residues at P and Q are 1 and −1 respectively.

Since Corollary 2.6.9 tells us that {(
∫
ai
ω1, ...,

∫
ai
ωg)}1≤i≤g spans Cg, there is some holo-

morphic differential ω ∈ Ω(C) satisfying (
∫
a1
ω, ...,

∫
ag
ω) = (

∫
a1
ωD, ...,

∫
ag
ωD). By subtract-

ing this ω from ωD, we guarantee that ωD satisfies
∫
ai
ωD = 0 for 1 ≤ i ≤ g, and uniqueness

also follows quickly from Corollary 2.6.9.

Lemma 2.6.12. Choose any D ∈ Div0(C) and let ωD ∈ Ω(C) be the corresponding differ-
ential form given by Lemma 2.6.11. Then we have the identity

AJ(D) =
1

2π
√
−1

(∫
b1

ωD, ...,

∫
bg

ωD

)
+ Λ ∈ J. (2.29)

Proof. First note that Lemma 2.6.8 says that for a fixed j,∫
∂P

(∫ P

O

ωj

)
ωD =

g∑
i=1

(∫
ai

ωj

∫
bi

ωD −
∫
ai

ωD

∫
bi

ωj

)
=

∫
bj

ωD, (2.30)

where the second inequality follows from the properties
∫
aj
ωi = δi,j and

∫
ai
ωD = 0 for

1 ≤ i ≤ g. Meanwhile, we may evaluate the integral on the left-hand side by calculating
residues, as follows. Note that the function P 7→

∫ P
O
ωj has no poles anywhere because ωj is

holomorphic, but if we write D =
∑r

k=1 nk(Pk) with nk 6= 0 then ωD has only a simple pole
at each Pk with residue nk. The residue formula then yeilds∫

∂P

(∫ P

O

ωj

)
ωD = 2π

√
−1
∑

nk

∫ Pk

O

ωj, (2.31)

where the paths from O and P lie in the interior of P . The statement of the lemma now
follows from (2.30) and (2.31) and the definition of AJ.
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Lemma 2.6.13. If a function f ∈ M(C) is holomorphic on a loop a ∈ H1(C,Z), then the
value of the integral

∫
a
df/f is an integer multiple of 2π

√
−1.

Proof. This is a standard fact in complex analysis and arises intuitively from the observation
that df/f = d(log f) with log f defined up to an integer multiple of 2π

√
−1.

We are finally ready to begin the proof of Abel’s Theorem. We have to show that a
divisor D ∈ Div0(C) is in the kernel of AJ if and only if D is the divisor associated to some
meromorphic function on C. First choose any f ∈M(C) and write (f) =: D =

∑
nk(Pk) ∈

Div0(C) with integers nk 6= 0. Now we easily verify that the only poles of df/f ∈ Ω(C) are
simple poles at each Pk with residue nk. Then df/f has the same poles with the same residues
as the differential ωD ∈ Ω(C) as given by Lemma 2.6.11, so we must have df/f = ωD + ω
for some holomorphic differential ω. We write 1

2π
√
−1
ω =

∑g
i=1miωi ∈ Ω(C) with mi ∈ C.

For each i, we get that 2π
√
−1mi = 2π

√
−1
∑g

j=1 mj

∫
ai
ωj =

∫
ai
ω =

∫
ai

df
f
−
∫
ai
ωD =∫

ai

df
f
− 0 ∈ 2π

√
−1Z by Lemmas 2.6.11 and 2.6.13, so in fact the mi’s are integers.

Now, using Lemma 2.6.12, we compute that AJ(D) is equal to

1

2π
√
−1

(∫
b1

ωD, ...,

∫
bg

ωD

)
+Λ =

1

2π
√
−1

(∫
b1

df

f
, ...,

∫
bg

df

f

)
− 1

2π
√
−1

(∫
b1

ω, ...,

∫
bg

ω

)
+Λ

=
1

2π
√
−1

(∫
b1

df

f
, ...,

∫
bg

df

f

)
−

g∑
i=1

mi

(∫
b1

ωi, ...,

∫
bg

ωi

)
+ Λ. (2.32)

Note that Lemma 2.6.13 implies that the first term in (2.32) lies in Zg ⊂ Λ. Moreover, the
second term in (2.32) is

∑g
i=1mi(Πi,1, ...,Πi,g) =

∑g
j=1mi(Π1,j, ...,Πg,j) by Corollary 2.6.10.

Moreover, since we have mi ∈ Z for 1 ≤ i ≤ g, the second term lies in Λ. Therefore, we have
AJ(D) = 0 ∈ Cg/Λ = J , as desired.

We now prove the converse – if D =
∑
nk(Pk) ∈ Div0(C) is a divisor such that AJ(D) =

0 ∈ J , then D is the divisor associated to some function f ∈M(C) – by essentially running
the above argument backwards. We again define ωD ∈ Ω(C) to be the differential form given

by Lemma 2.6.11. We would like to be able to set f(P ) = e
∫ P
O ωD , noting that df/f = ωD and

so (f) = D, but this function is not well defined unless the integral
∫ P
O
ωD is well-defined

up to an integer multiple of 2π
√
−1. We claim that there is a holomorphic differential

ω ∈ Ω(C) such that
∫
ai

(ωD + ω),
∫
bi

(ωD + ω) ∈ 2π
√
−1Z for 1 ≤ i ≤ g. Indeed, since

AJ(D) = 0, we have (
∑

k nk
∫ Pk
O
ω1, ...,

∑
k nk

∫ Pk
O
ωg) ∈ Λ, where each integral is defined

along a path lying in the interior of P . Keeping in mind that Λ = Zg + ΠZg = Zg + ZgΠ
by Lemma 2.6.10, for each j, we may write

∑
k nk

∫ Pk
O
ωj as sj −

∑g
i=1miΠi,j for some

integers sj,m1, ...,mg ∈ Z. Now we let ω = 2π
√
−1
∑g

i=1miωi. Then for each j, we have
1

2π
√
−1

∫
aj

(ωD + ω) = 1
2π
√
−1

∫
aj
ω = mj ∈ Z. Moreover, using Lemma 2.6.12, we have

1

2π
√
−1

∫
bj

(ωD +ω) =
∑
k

nk

∫ Pk

O

ωj +

g∑
i=1

mi

∫
bj

ωi = sj −
g∑
i=1

miΠi,j +

g∑
i=1

miΠi,j = sj ∈ Z.

(2.33)
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Therefore, we have
∫
ai

(ωD + ω),
∫
bi

(ωD + ω) ∈ 2π
√
−1Z, and so the expression

∫ P
O

(ωD + ω)

is defined up to integer multiples of 2π
√
−1. Thus, the meromorphic function f(P ) :=

e
∫ P
O (ωD+ω) is well-defined. Moreover, since ω is holomorphic, ωD +ω has the same poles with

the same residues as ωD does, and it follows that (f) = D. Abel’s Theorem is proved.

2.6.4 Proof of Jacobi’s Theorem

We now prove Jacobi’s part of Theorem 2.6.7. This proof is much simpler and (in my opinion)
a little more intuitive. The idea is that by Corollary 2.6.4, given a basepoint O ∈ C, every
divisor in Div0(C) can be represented by a divisor of the form

∑g
i=1(Pi)− g(O). Therefore,

Abel’s Theorem suggests that it makes sense to study the map AJ(g) : Cg → J given by

Ψ : (P1, ..., Pg) 7→
g∑
i=1

(∫ Pi

O

ω1, ...,

∫ Pi

O

ωg

)
+ Λ

and to show that it is surjective. (In fact, it is possible to show in the algebraic case that
J is a g-dimensional variety and AJ(g)i induces a birational map from the g-fold symmetric
product of C to J , but we will not show this here.)

Lemma 2.6.14. There exist distinct points Q1, ..., Qg ∈ C such that there is no nonzero
holomorphic differential form ω with (ω) ≥

∑g
i=1(Qi) ∈ Div(C).

Proof. Choose a holomorphic differential form ω0 ∈ Ω(C), and choose a point Q1 ∈ C at
which ω0 does not have a zero. Since by Corollary 2.6.3, the dimension of the space of
holomorphic differentials has dimension g, it follows that the space of holomorphic differ-
entials ω with (ω) ≥ (Q1) ∈ Div(C) has dimension strictly less than g. But it follows
from putting D = (Q1) into the formula in Theorem 2.6.2 that l(K − (Q1)) ≥ g − 1,
and thus the dimension of the latter space, which is isomorphic to L(K − (Q1)), is equal
to g − 1. Now choose a holomorphic differential form ω1 ∈ Ω(C) with (ω1) ≥ (Q1), and
choose a point Q2 ∈ C at which ω1 does not have a zero. By a similar argument, we get
l(K − (Q1) − (Q2)) = g − 2. We may repeat this process until we have distinct points
Q1, ..., Qg such that l(K− (Q1)− ...− (Qg)) = g− g = 0, which implies the desired property.

Lemma 2.6.15. Choose distinct points Q1, ..., Qg ∈ C satisfying the property given in the
statement of Lemma 2.6.14. Then there is an open neighborhood U of (Q1, ..., Qg) ∈ Cg such
that the map Ψ : Cg → J given by

(P1, ..., Pg) 7→
g∑
i=1

(∫ Pi

Qi

ω1, ...,

∫ Pi

Qi

ωg

)
+ Λ,

when restricted to U , is a biholomorphism of U onto an open neighborhood of 0 ∈ J .

Proof. Choose an open neighborhood U ′ of (Q1, ..., Qg) ∈ Cg such that each projection of U ′

is simply connected. Now consider the map Ψ̃ : U ′ → Cg given by

(P1, ..., Pg) 7→
g∑
i=1

(∫ Pi

Qi

ω1, ...,

∫ Pi

Qi

ωg

)
,
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which is well-defined because of simple connecteness. Let ti be a local parameter of Qi for
1 ≤ i ≤ g. Then locally Ψ̃ = (Ψ̃1, ..., Ψ̃g) can be expressed as a map Cg → Cg given by
(ti)

g
i=1 7→ (Ψ̃j(t1, ..., tg))

g
j=1. Thus the Jacobian matrix of the holomorphic function Ψ at

the point (Q1, ..., Qg) ∈ U ′ is given by (dΨ̃i/dtj)1≤i,j≤g = (ωi/dtj)1≤i,j≤g. This Jacobian
matrix can be viewed as a linear map from the space of holomorphic differential forms on
C to Cg, where each holomorphic ω =

∑g
i=1 miωi ∈ Ω(C) is considered as the row vector

(m1, ...,mg) ∈ Cg being multiplied to the left of the matrix. So if the kernel of this map
were nontrivial, then there would exist a nonzero holomorphic ω ∈ Ω(C) with ω/dti = 0
for 1 ≤ i ≤ g. In other words, ω would have a zero at all points Qi, which contradicts the
property of the Qi’s given in the hypothesis. Thus, the Jacobian matrix is invertible, and
by the Inverse Function Theorem there is a neighborhood U ⊆ U ′ of (Q1, ..., Qg) ∈ Cg such
that the map given in the statement is a biholomorphism of U onto an open neighborhood
of 0 ∈ J .

Remark 2.6.16. Obviously it is no coincidence that in determining the group structure of
what we now call the “Jacobian variety” of a curve, the mathematician Jacobi used what
we now call a “Jacobian matrix”. Referring simply to “Jacobians” can occasionally cause
confusion in my experience, because many mathematicians and physicists often assume that
one is talking about the somewhat better-known Jacobian matrices.

Now we can easily prove Jacobi’s theorem. We choose distinct points Q1, ..., Qg sat-
isfying the property given in Lemma 2.6.14, which we know exist by that lemma. Then
it follows from Lemma 2.6.15 and the above discussion that the map AJ : Div0(C) → J

is surjective onto an open neighborhood of v :=
∑g

i=1(
∫ Qi
O
ω1, ...,

∫ Qi
O
ωg) + Λ ∈ J . Since

v = AJ(
∑g

i=1(Qi) − g(O)), we see that AJ is surjective onto a translation of that open
neighborhood by −v, which is an open neighborhood of 0 ∈ J which we denote by U ′′. It is
easy to see that given any a ∈ J , we have a/N ∈ U ′′ for some large enough integer N . Then
there is some divisor D ∈ Div0(C) with AJ(D) = a/N and we get AJ(N ·D) = a. Therefore,
the Abel-Jacobi map AJ is surjective onto all of J , and Jacobi’s Theorem is proved.

The following easy corollary directly implies that J is actually a complex torus.

Corollary 2.6.17. The lattice Λ ∈ Cg has rank 2g.

Proof. Theorem 2.6.7 tells us that any a ∈ J is the image under AJ of some [D] ∈ Pic0(C),
and in fact, Corollary 2.6.4 tells us that we can choose a representative of [D] of the form
D =

∑g
i=1(Pi)− g(O) (here O is the basepoint used to define the map AJ). Thus, the image

A ⊂ Cg of the holomorphic map on Cg given by (P1, ..., Pg) 7→
∑g

i=1(
∫ Pi
O
ω1, ...,

∫ Pi
O
ωg) ∈ Cg,

where again we integrate along any path fromO to each Pi lying inside P , satisfiesA+Λ = Cg.
Note that A is the image of the compact space C and is thus a compact subset of Cg. The
fact that Cg = A + Λ for a compact subset A ⊂ Cg is equivalent to the statement of the
corollary.

Remark 2.6.18. a) Note that Theorem 2.6.7 and Corollary 2.6.17 give us a canonical
isomorphism H1(C,Z)

∼→ Λ = H1(J,Z) of Z-lattices of rank 2g.
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b) It can be shown using Riemann’s relations (Corollary 2.6.10 and Exercise 2.7.10) that
there is a positive definite Riemann form on Cg with respect to Λ induced by the intersection
pairing on H1(C,Z) ∼= Λ (which is given by 〈ai, aj〉 = 〈bi, bj〉 = 0 and 〈ai, bi〉 = −1 for
1 ≤ i < j ≤ g). It follows that J is in fact a complex abelian variety of dimension g.
Moreover, since the determinant of the intersection pairing is 1, we see that J has a canonical
principal polarization so that J is self-dual.

c) It is possible also for any smooth, proper curve C over any field K to show that the
group Pic0(C) also has the structure of an abelian variety over K and thus to define the
Jacobian of a curve in a completely algebraic setting. This is done by Milne in [4].

2.7 Exercises

Exercise 2.7.1. Show that given any alternating form E : Λ × Λ → Z, there is a function
K : Λ → Q satisfying K(λ1 + λ2) − K(λ1) − K(λ2) ≡ 1

2
E(λ1, λ2) (mod Z) for λ1, λ2 ∈ Λ.

(Hint: start by turning 1
2
E into a symmetric Z-bilinear function on Λ.)

Exercise 2.7.2. Show that the Riemann form defined at the beginning of §2.4 is well-defined
regardless of choice of basis of Λ.

Exercise 2.7.3. By directly using the formula for ℘, find the zeroes of the derivative ℘′.
Relate this to the characterization of the 2-torsion subgroup of an elliptic curve coming from
Exercise 1.2.3.

Exercise 2.7.4. Show that the subgroup Div0(X) ⊆ Div(X) may instead be defined as
consisting of all divisors D ∈ Div(X) such that t∗aD − D ∈ Prin(X) for all a ∈ X (this is
how Div0(X) is defined in a purely algebraic setting).

Exercise 2.7.5. Let ϕ : X1 → X2 be an isogeny of complex abelian varieties. In a natural
way, construct an isogeny ϕ∨ : X∨2 → X∨1 , called the dual isogeny. This shows that taking
duals is in some sense a contravariant functor from the category of abelian varieties to itself.
(Hint: in fact, the map ϕ∨ : Pic0(X2) → Pic0(X1) is given by pulling back divisors as
discussed earlier; the hard part is showing that ϕ∨ is an isogeny. This exercise is rather long
and difficult but can be done by unwinding several definitions and constructions.)

Exercise 2.7.6. Show that if ϕ : X1 → X2 is an isogeny of complex elliptic curves, and we
identify each elliptic curve with its dual, then the dual isogeny ϕ∨ : X2 → X1 defined in the
above exercise is actually the isogeny ϕ′ guaranteed by (and constructed in the proof of)
Proposition 2.5.7.

Exercise 2.7.7. Use the Riemann-Roch formula (Theorem 2.6.2) to verify some of what
was shown in Example 2.6.1.

Exercise 2.7.8. Show that the Abel-Jacobi map defined on points of C, which was denoted
AJ : C → Cg/Λ in §2.6.2 is always injective as long as g ≥ 1. Conclude that AJ is an
isomorphism if g = 1 (this is another way to see that a complex curve which has genus 1
according to the algebraic definition can be realized as C modulo a lattice).
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Exercise 2.7.9. Formulate a shorter argument for one direction of Abel’s Theorem – the
claim that Prin(C) ⊆ ker(AJ) – based on the following ideas. For any f ∈ M(C), one may
define a holomorphic map C ∪ {∞} → J by composing the map C ∪ {∞} → Div(C) given
by z 7→ f ∗((z)) ∈ Div(C) with AJ. First show that this map is constant. Then use this to
prove that AJ((f)) = 0 ∈ J .

Exercise 2.7.10. Show using Riemann-Roch that a set of points Q1, ..., Qg ∈ C satisfies
the property described in Lemma 2.6.14 if and only if

∑g
i=1(Qi) − g(O) is the “shortest”

representative of its class in Pic0(C); that is, there is no divisor in that class which can be
written as

∑g−1
i=1 (Q′i)− (g − 1)(O)

Exercise 2.7.11. Use Lemma 2.6.8 to prove the second of “Riemann’s relations”, which says
that the imaginary part of Π is positive definite. (Hint: use the fact that −1

2i

∫
C
ω ∧ ω̄ > 0

for any holomorphic ω 6= 0.)
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Chapter 3

Elliptic curves and arithmetic

We now turn to the second part of the course, where we focus solely on elliptic curves (rather
than abelian varieties) and study them from a purely algebraic point of view. This means
that we will no longer assume that a given elliptic curve is defined over the complex numbers,
and we will instead specify a field K over which the curve is defined. Of course, if in many
cases, such as when K is finitely generated over Q, there is obviously an embedding K ↪→ C
and our elliptic curve can still be defined over C, which at times will allow us to draw from
the theory of complex elliptic curves.

3.1 Defining equations and the group law

We start this chapter by finally uniting the three definitions of “elliptic curve” given in
§1.1. For the most part, we have already shown (at least in the complex case) that they are
equivalent. We sum up most of the relevant facts in the following proposition. Note that we
will only prove part (b) below in the case that K = C.

Proposition 3.1.1. a) Given a smooth projective curve C over a field K, if the character-
istic of K is different from 2 (resp. if K has characteristic 2), the following properties are
equivalent (resp. the following properties (i) and (ii) are equivalent):

i) C has genus 1 and possesses a K-point O ∈ C(K);
ii) C can be defined by an equation of the form y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

with ai ∈ K such that there are no singular points; and
iii) C can be defined by an equation of the form y2 = f(x) where f ∈ K[x] is a monic

cubic polynomial without multiple roots in K̄ (this is called Weierstrass form).
Moreover, if these equivalent conditions hold, then distinguishing a K-point O ∈ C gives

C the structure of a 1-dimensional abelian variety over K whose identity element is O.
b) Let A be an abelian variety of dimension 1. Then conversely, A is a smooth projective

curve of genus 1 and can therefore be defined using an equation of a form given in (a)(ii) or
in (a)(iii).

Proof. For part (a), we first note that (iii) immediately implies (ii), while given an equation
of the form in (ii), as long as K doesn’t have characteristic 2 one can get rid of a1 and a3 by
a simple completing-the-square operation which replaces y by y − (a1x + a3)/2. Therefore,
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(ii) and (iii) are equivalent in the non-characteristic-2 case, and it remains to show that both
are equivalent to (i).

Given a smooth projective curve C of genus g = 1, recall that we showed using the
Riemann-Roch theorem (which holds over general fields as well as C) that any canonical
divisor K ∈ Div(C) has degree 2g − 2 = 0. It follows from an application of the formula in
Theorem 2.6.2 that l(n(O)) = n for n ≥ 1. Then we may apply the same argument in the
proof of Proposition 2.4.1 to show that C may be defined by a polynomial relation in two
variables x and y which is a linear combination of 1, x, y, x2, xy, x3, y2 ∈ K[x, y], where the
coefficients of both x3 and y2 must be nonzero – we denote them by r, s ∈ K× respectively.
By scaling x and y by −rs and r2s respectively, we get a defining equation of the form given
in (ii), and so (i) implies (ii).

Conversely, suppose that K has characteristic different from 2 and C is defined by an
equation of the form given in (iii). Then it is straightforward to verify that all holomorphic
differentials on C are scalar multiples of dx/y (see the explanation in Example 2.6.1) and
therefore the genus is 1. Thus, (iii) implies (i); one can do a similar computation of the
holomorphic differentials to prove that (ii) implies (i) in the characteristic-2 case.

To prove the second statement of (a), we note that in the complex case, a genus 1 curve C
is isomorphic via the Abel-Jacobi map AJ (which we define with respect to the chosen point
O) to its Jacobian J , which is an 1-dimensional abelian variety (see Exercise 2.7.8). For
general K, first let C be defined by an equation of the form in (a)(iii). We may assume that
the distinguished K-point O is the infinity point∞, because otherwise we may “subtract by
O” using the operation described in Definition 1.1.4, which is clearly algebraic and defined
over K. Now, in order to show that C is an abelian variety it suffices to show that this law
is in fact a group law as claimed, which we will do below (Proposition 3.1.2).

To prove (b) in the complex case, we use the results in §2.1 as well as Proposition 2.4.1,
which show that every 1-dimensional abelian variety is given by C modulo a lattice, which
can be uniformized as a complex curve defined by a cubic polynomial of the form in (a)(ii).

In order to finish proving that our three Definitions 1.1.1, 1.1.3, and 1.1.4 are all equiv-
alent, all we need to do is to show that the law described in the last definition is in fact a
group law. Actually, all the group axioms were proven for this law except for the associative
property. In order to show this, we will show that if E is a curve of genus 1 over any field K
with a distinguished K-point O ∈ E, then there is a bijection of sets E

∼→ Pic0(E) (which
in the complex case is just the Abel-Jacobi map) such that the group law on Pic0(E) can
be defined for the points of the curve E as in Definition 1.1.4. Before stating this next
proposition, we note that the law given in the definition is essentially equivalent to saying
that the sum of three points on the cubic add up to 0 if and only if there is a line in P2

K

which intersects E at exactly those three points (counting multiplicities).

Proposition 3.1.2. Let E be a smooth projective curve of genus 1 over a field K, and let
O be a K-point of E.

a) The map on K̄-points of E given by P 7→ [(P )− (O)] ∈ Pic0(E) defines a bijection of
sets φ : E(K̄)

∼→ Pic0(E). In this way, E(K̄) inherits a group law from Pic0(E) in which O
is the identity element (which we also denote by 0 ∈ E(K̄)).

38



b) Now let E be given by an equation of the form in Definition 1.1.4 and let O = ∞.
The group law on E(K̄) which we obtain as in part (a) can be defined by the following rule:
for any points P,Q,R ∈ E(K̄), we have P + Q + R = 0 if and only if there is a line in P2

K

which intersects E at exactly P , Q, and R (counting multiplicities).

Proof. We note that in the complex case, (a) is given by Exercise 2.7.8. For general K,
note first that there cannot be a function h ∈ K̄(E) with a pole of order 1 at one point
P ∈ E(K̄) and no poles anywhere else because then h : E → P1

K would be a degree-
1 morphism which would force E = P1

K (this can also be checked using Riemann-Roch).
Therefore (P ) − (∞) ∈ Div0(E) is not principal for P 6= ∞ and the map is injective.
Surjectivity follows from Corollary 2.6.4, which says that every divisor class in Pic0(E) can
be represented by a divisor of the form (P )− (∞) ∈ Div0(E).

Now let P,Q,R ∈ E(K̄) be any points, and assume that P,Q,R 6=∞ (the full argument
in the case that some of these points are ∞ is very similar). Suppose first that there is a
line in P2

K as in the statement of part (b). That is to say, if this line is given by a linear
equation h(x, y) = 0 for some h ∈ K̄(E), then the linear function h has associated divisor
(P ) + (Q) + (R)−3(∞) (note that a line intersects a cubic at 3 points by Bézout’s Theorem,
so h cannot have any other zeros). Then 0 = [(P )+(Q)+(R)−3(∞)] = φ(P )+φ(Q)+φ(R) ∈
Pic0(E) and therefore P +Q+R = 0.

Conversely, suppose that P +Q+R = 0. Then [(P )+(Q)+(R)−3(∞)] = φ(P )+φ(Q)+
φ(R) = 0 ∈ Pic0(E), so there is some function h ∈ K̄(E) with (h) = (P )+(Q)+(R)−3(∞).
Then h ∈ L(3(∞)), which has dimension 3 by Riemann-Roch. Since 1, x, y ∈ L(3(∞)) with
no linear relations between them, L(3(∞)) = 〈1, x, y〉 and h is a linear function in x and y.
Therefore, the line in P2

K given by h(x, y) = 0 intersects E at exactly the points P , Q, and
R (counting multiplicities).

3.2 Isogenies and endomorphisms of elliptic curves

For this entire section, we make the simplifying assumption that the characteristic of the
ground field K is not 2. For a treatment over characteristic 2, see [8, Appendix A].

3.2.1 Isomorphisms and the j-invariant

We assume for this subsection that every elliptic curve E over K is defined using a model
in Weierstrass form (y2 = f(x) for some cubic polynomial f ∈ K[x] with no multiple roots
in K̄). We now investigate how to tell from any cubic polynomial f ∈ K[x] whether the
curve given by y2 = f(x) is smooth or has a particular type of singularity, and whether or
not it is isomorphic to another curve of this form. First we define some important constants
associated to a Weierstrass cubic y2 = f(x).

Definition 3.2.1. Let f(x) = x3 + bx2 + cx+d with b, c, d ∈ K. Then the discriminant of
the (projective) cubic curve E given by y2 = f(x) is defined to be 16 times the discriminant
of the cubic f (it’s given by ∆(E) = 16(b2c2 − 4c3 − 27d2 + 18bcd) ∈ K). If ∆ 6= 0, then the
j-invariant of E is given by j(E) = (16b2 − 48c)3/∆(E) ∈ K.
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Proposition 3.2.2. a) Let E be the projective curve over K given by an equation of the
form y2 = f(x) as in Definition 3.2.1. Then E is an elliptic curve (i.e. E is smooth) if and
only if ∆(E) 6= 0. If ∆(E) = 0, then E has a node (resp. a cusp) if the cubic f has a double
root and a single root (resp. has a triple root) in K̄.

b) If E1 and E2 are elliptic curves over K given by equations of the form y2 = f1(x) and
y2 = f2(x) respectively, then the following are equivalent:

i) E1 and E2 are isomorphic over some algebraic extension K ′/K;
ii) f2(x) = f1(u2x+ v) for some elements u, v in some algebraic extension K ′/K; and
iii) j(E1) = j(E2).

c) For any j0 ∈ K̄, there is an elliptic curve E defined over K(j0) with j(E) = j0. (In
particular, for any j0 ∈ K, there is an elliptic curve E defined over K with j(E) = j0.)

Proof. Part (a) can be proven through an elementary computation using algebraic geometry,
noting that ∆(E) = 0 if and only if the cubic f(x) has a multiple root α ∈ K̄. If this is the
case, then the point (α, 0) ∈ E(K̄) is a singular point, and it is a node (resp. a cusp) if α is
a double root (resp. a triple root).

For (b), we first check that any isomorphism of elliptic curves E1
∼→ E2 must fix the point

at infinity and therefore projects to an affine transformation on the x-line, so x 7→ u′x + v
for some u, v ∈ K ′. Since scaling x by u′ forces y to be scaled by ±u′3/2, it is clear that
u′ = u2 for some u ∈ K ′. Now it is straightforward to check that x 7→ u2x+ v multiplies the
discriminant of the cubic f , and therefore also ∆(E), by u12. However, it also multiplies the
expression (16b2 − 48c)3 by u12 and therefore doesn’t change j(E). Meanwhile, translating
x by v changes neither the discriminant ∆(E) nor the expression (16b2 − 48c)3, so that
also doesn’t change j(E). Finally, assume that E1 and E2 two elliptic curves such that
j(E1) = j(E2). Then if we assume that the characteristic of K is different from 3 (for fields
of characteristic 3, this is a separate exercise), we can reduce the cubics in the equations
defining E1 and E2 so that the x2-terms vanish, and directly find some u ∈ K̄ such that the
map (x, y) 7→ (u2x, u3y) is an isomorphism E1

∼→ E2.
For (c), choose any j0 ∈ K̄. Then if j0 6= 0, 1728, consider the elliptic curve Ej0 over the

field K(j0) defined by the equation

y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728
. (3.1)

Then we check that this equation describes a smooth curve in these cases and compute
j(Ej0) = j0. If j0 = 0, then we let E0 be given by y2 = x3 − 1 and check that j(E0) = 0. If
j0 = 1728, then we let E1728 be given by y2 = x3 − x and check that j(E1728) = 1728.

Remark 3.2.3. The reader may wonder why quantities like ∆(E) and j(E) are defined with
“extra” factors like 1728 and 163 which actually play no role in the statement of the above
proposition nor in its proof. The main explanation is that when considering reduction of
elliptic curves over local fields of residue characteristic 2 and 3, it becomes useful to define
these quantities to have certain divisibilities by 2 and by 3 so that results can be stated more
elegantly.
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3.2.2 Isogenies and their duals

We recall the definition of an “isogeny” of abelian varieties which was given as Definition
2.5.1: an isogeny of elliptic curves E1 and E2 is a surjective morphism E1 → E2 which is
a homomorphism of groups. We now present an equivalent definition in the case of elliptic
curves.

Definition 3.2.4. An isogeny of elliptic curves E1 and E2 is a nonconstant morphism
ϕ : E1 → E2 with ϕ(0) = 0.

Proposition 3.2.5. The definition of “isogeny” of elliptic curves given as Definition 2.5.1
is equivalent to Definition 3.2.4.

Proof. Clearly Definition 2.5.1 implies Definition 3.2.4. Now let ϕ : E1 → E2 be a noncon-
stant morphism satisfying ϕ(0) = 0. Let ϕ∗ : Pic0(E1) → Pic0(E2) be the induced homo-
morphism on divisor classes given by [

∑
i ni(Pi)] 7→ [

∑
i ni(ϕ(Pi))] (one checks that this is

well-defined by noting that the pushforward by ϕ of the divisor of a function f ∈ K(E1) is
the divisor of the norm in K(E2) of f). Then if we let φj : Ej

∼→ Pic0(Ej) be the isomorphism
given in Proposition 3.1.2 for j = 1, 2, it is easy to check that the maps ϕ : E1 → E2 and
ϕ∗ : Pic0(E1)→ Pic0(E2) commute with the φj’s (using the fact that ϕ(0) = 0). Therefore,
ϕ is also a group homomorphism. Moreover, since any nonconstant map between proper
curves is surjective, ϕ is a surjection.

Note that one can easily verify using the Hurwitz Formula that every separable isogeny
(in particular, every isogeny of degree prime to the characteristic of the ground field) is an
unramified morphism (see Exercise 3.3.1).

Proposition 3.2.6. Let E be an elliptic curve over a field K, and let N ⊂ E(K̄) be a finite
subgroup. Then there is an elliptic curve E ′ defined over some algebraic extension K ′ of K
and a separable isogeny ϕ : E → E ′ defined over K ′ whose kernel coincides with N . In other
words, the quotient E/N is an elliptic curve.

Remark 3.2.7. Note that this was already shown for complex elliptic curves in Corollary
2.5.4. In fact, the extension K ′ is the subfield of K̄ fixed by the elements of the absolute
Galois group of K which stabilize N ⊂ E(K̄), but we will not prove this here.

Proof. For each point P ∈ E(K̄), let tP : E → E be the translation-by-P morphism defined
over K̄ which is given by Q 7→ P + Q, and let t∗P : K̄(E) → K̄(E) be the pullback of
this morphism to an automorphism of the function field. Let Φ be the (finite) group of
automorphisms of K̄(E) consisting of elements t∗P for each P ∈ N , and let K̄(E)Φ be
the subfield of K̄(E) fixed by this automorphism group. Then clearly K̄(E) is a finite
Galois extension of K̄(E)Φ with Galois group Φ. Since K̄(E)Φ also has transcendence degree
1 over K̄, there is a smooth curve E ′ over K̄ with K̄(E ′) = K̄(E)Φ, and the inclusion
K̄(E ′) ↪→ K̄(E) corresponds to a morphism ϕ : E → E ′ (we can always find a subfield
K ′ ⊆ K̄ finite over K over which E ′ and ϕ are defined). It is easy to check that the
inverse image of any point in E ′(K̄) is a coset of the subgroup N ⊂ E(K̄) by showing that
f ◦ ϕ ◦ tP = f ◦ ϕ for every f ∈ K̄(E ′). Thus, the morphism ϕ is unramified. It follows
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from an application of the Hurwitz Formula that E ′ has genus 1, and therefore, by choosing
the distinguished point ϕ(0) ∈ E ′(K̄), we see that E ′ is an elliptic curve and that ϕ is an
isogeny.

As we saw before in §2.5.1, an isogeny ϕ always has finite degree (which we denote by
deg(ϕ)) and finite kernel. It is clear from basic algebraic principles that the degree is equal to
the order of the kernel if and only if the isogeny is separable (which is always the case when
K has characteristic 0). More generally, since an isogeny ϕ : E1 → E2 induces an inclusion
of function fields K̄(E2) ⊆ K̄(E1) which has a maximal separable subextension over which
K̄(E2) is purely inseparable of degree deginsep(ϕ), we have deg(ϕ) = deginsep(ϕ) ·# ker(ϕ).

Proposition 3.2.8. For any elliptic curve E over K, the multiplication-by-n map [n] : E →
E is an isogeny for any integer n 6= 0.

Proof. We have to show that [n] does not take everything in E(K̄) to 0 ∈ E(K̄). Assume
now that K does not have characteristic 2 (if it does, then there is a similar argument
using a trickier computation). One can check that this is true for n = 2 using an explicit
characterization of the (finite number of) 2-torsion points of E(K̄) given by Exercise 1.2.3.
Then given a point P ∈ E(K̄) of order 2, we have nP = P 6= 0 for any odd n, and the claim
follows.

We denote by Hom(E1, E2) the set of all isogenies from the elliptic curve E1 to the elliptic
curve E2, along with the trivial map 0 : E1 → E2. Then it is clear from the abelian group
structure on E2 that Hom(E1, E2) has the structure of a Z-module. We adopt the convention
that the degree of the trivial map is 0.

Proposition 3.2.9. The Z-module Hom(E1, E2) defined above is free of rank at most 4.

Proof (sketch). We first show that the torsion subgroup of Hom(E1, E2) is trivial. Indeed,
if there exists an isogeny ϕ : E1 → E2 and an integer n ≥ 1 such that [n] ◦ ϕ = 0, then it
follows from the surjectiveness (on K̄-points) of ϕ that [n] is the trivial endomorphism on
E2. But Proposition 3.2.8 says that this is impossible.

Now the proof that Hom(E1, E2) is in fact finitely generated and has rank at most 4
follows from showing that for some prime ` there is an injection of Hom(E1, E2) ⊗ Z` into
the group of Z`-homomorphisms between certain free rank-2 Z`-modules associated to E1

and E2 (this Z`-homomorphism group is obviously itself a free rank-4 Z`-module) which are
called the `-adic Tate modules of E1 and E2. For reasons of time, we do not develop this
construction in these notes.

In §2.5, given an isogeny of abelian varieties ϕ : X1 → X2, we came up with two notions
of a dual isogeny: the isogeny ϕ′ : X2 → X1 given by Proposition 2.5.7 and the isogeny
ϕ∨ : X∨2 → X∨1 constructed in Exercise 2.7.5. One can show (Exercise 2.7.6) that these
two notions coincide in the case of complex elliptic curves, and we will now show that dual
isogenies can be constructed in the purely algebraic situation as well. Note that this will
allow us to say that two elliptic curves are “isogenous” (satisfying an equivalence relation)
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if there is an isogeny from one to the other, as we did for complex abelian varieties (see
Remark 2.5.8).

Definition 3.2.10. Let ϕ : E1 → E2 be an isogeny of elliptic curves. Then we define the
dual isogeny ϕ∨ : E2 → E1 as the map given by φ−1

1 ◦ ϕ∗ ◦ φ2, where ϕ∗ : Pic0(E2) →
Pic0(E1) is the pullback map on divisor classes induced by ϕ, and where φj : Ej

∼→ Pic0(Ej)
is the isomorphism given in Proposition 3.1.2 for j = 1, 2.

It might not be immediately obvious from the definition of “dual isogeny” that this map
ϕ∨ is actually an isogeny. The next proposition claims this and much more.

Proposition 3.2.11. Let ϕ : E1 → E2 be an isogeny of elliptic curves.
a) We have ϕ∨ ◦ ϕ = [m] : E1 → E1 and ϕ ◦ ϕ∨ = [m] : E2 → E2, where m = deg(ϕ).
b) If ψ : E1 → E2 is another isogeny, then (ϕ+ ψ)∨ = ϕ∨ + ψ∨ and (ϕ ◦ ψ)∨ = ψ∨ ◦ ϕ∨.
c) We have [n]∨ = [n] : E → E and deg([n]) = n2 for any integer n.
d) The map ϕ∨ is an isogeny with deg(ϕ∨) = deg(ϕ).
e) We have (ϕ∨)∨ = ϕ : E1 → E2.

Proof. Choose some Q ∈ E2(K̄) and P0 ∈ ϕ−1(Q), and compute

ϕ∨(Q) = φ−1
1 (ϕ∗([(Q)− (O)])) = φ−1

1

deginsep(ϕ)

 ∑
P∈ϕ−1(Q)

(P )−
∑

T∈ϕ−1(O)

(T )



= φ−1
1

deginsep(ϕ)

 ∑
T∈ϕ−1(O)

(P0 + T )−
∑

T∈ϕ−1(O)

(T )

 = φ−1
1

(
deginsep(ϕ)

∑
T∈ϕ−1(O)

(φ1(P0+T )−φ1(P0))
)

= φ−1
1

(
deginsep(ϕ) ·#ϕ−1(Q) · φ1(P0)

)
= deg(ϕ)φ−1

1 (φ1(P0)) = mP0.

Therefore ϕ∨ ◦ ϕ = [m]. Now we verify

[m] ◦ ϕ = ϕ ◦ [m] = ϕ ◦ (ϕ∨ ◦ ϕ) = (ϕ ◦ ϕ∨) ◦ ϕ,

from which it follows that ϕ ◦ ϕ∨ = [m] since ϕ is surjective, proving (a).
We omit the proof of the first claim in (b) (which is surprisingly difficult), and the second

claim follows immediately from the definition of the dual isogeny.
To prove (c), we can see directly that [0]∨ = [0] and [1]∨ = [1], and the fact that [n]∨ = [n]

for general n ≥ Z follows from an obvious inductive argument using the additivity given in
(b). Now let m = deg([n]) and note that by (a), [m] = [n]∨ ◦ [n] = [n] ◦ [n] = [n2]. Since
then [0] = [m]− [n2] = [m− n2] and multiplication by any nonzero integer is a nonconstant
map, we have m− n2 = 0 and so deg([n]) = n2.

To prove (d), it suffices to show that there always exists an isogeny ϕ′ : E2 → E1 with
the property that ϕ′ ◦ ϕ = [m], from which it will follow from (a) that as maps from E2

to E1, ϕ∨ = ϕ′ and therefore ϕ∨ is an isogeny. If ϕ is separable, this claim follows from
an algebraic argument which we omit here concerning inclusions among the function fields
K̄(E1) and K̄(E2). We will defer the proof of the claim in the case that ϕ is not separable
to the next subsection.
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Now using (a) and the fact that deg(φ∨) = m by (d), we have

ϕ ◦ [m] = [m] ◦ ϕ = ((ϕ∨)∨ ◦ ϕ∨) ◦ ϕ = (ϕ∨)∨ ◦ (ϕ∨ ◦ ϕ) = (ϕ∨)∨ ◦ [m].

Since [m] is surjective, it follows that ϕ = (ϕ∨)∨, proving (e).

For any elliptic curve E over a field K and integer n ≥ 1, we denote by E[n] ⊂ E[K̄] the
kernel of the multiplication-by-n map [n] : E(K̄)→ E(K̄).

Corollary 3.2.12. If the characteristic of K does not divide n, then E[n] has order n2, and
we have E[n] ∼= Z/nZ⊕ Z/nZ.

Proof. By Proposition 3.2.11(c), we have deg([n]) = n2, and #E[n] = deg([n]) since [n] is not
divisible by the characteristic of K and therefore separable. Now by decomposing the finite
abelian group E[n] into a direct sum of cyclic subgroups and considering that #E[d] = d2

for each d dividing n, we see that the only possible group structure for E[n] is given by
Z/nZ⊕ Z/nZ.

Corollary 3.2.13. For elliptic curves E1 and E2 over K, the degree map deg : Hom(E1, E2)→
Z is a positive definite quadratic form.

Proof. We already know that deg(ϕ) ≥ 0 for all ϕ ∈ Hom(E1, E2) with equality if and only
if ϕ = 0, and it is clear that deg(nϕ) = n2 deg(ϕ) from Proposition 3.2.11(c). It remains to
prove that (ϕ, ψ) 7→ deg(ϕ+ψ)−deg(ϕ)−deg(ψ) is a bilinear form. To do this, we compute

[deg(ϕ+ ψ)− deg(ϕ)− deg(ψ)] = (ϕ+ ψ)∨ ◦ (ϕ+ ψ)− ϕ∨ ◦ ϕ− ψ∨ ◦ ψ = ϕ∨ ◦ ψ − ψ∨ ◦ ϕ,

which is bilinear (here we have used (a) as well as the additivity given by (b) in Proposition
3.2.11).

3.2.3 The endomorphism ring

Following the notation of §3.2.2, for any elliptic curve E, the Z-module Hom(E,E) clearly
has the structure of a ring via composition of elements. We denote this ring by End(E)
and call it the endomorphism ring of E. Our goal in this subsection is to investigate the
possible structure of this ring. Since each multiplication-by-n map is an endomorphism,
there is always a natural inclusion of rings Z ⊆ End(E) and we may consider End(E) as
a Z-algebra. In order to find all possible ring structures of End(E), we recall the following
facts that were shown in §3.2.2: (i) as an additive group, End(E) is a free Z-module of rank
at most 4; (ii) there is an anti-involution (·)∨ : End(E) → End(E) given by ϕ 7→ ϕ∨ which
preserves addition and reverses the order of multiplication and (iii) ϕ∨ϕ = ϕϕ∨ =: m ∈ Z≥0

for any ϕ ∈ End(E) with m = 0 if and only if ϕ = 0.
The following lemma is purely a statement in abstract algebra, and we leave it as Exercise

3.3.4.
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Lemma 3.2.14. Suppose that R is a Z-algebra satisfying the following properties:
(i) as an additive group, R is a free Z-module of rank at most 4;

(ii) there is an anti-involution (·)∨ : R → R fixing Z ⊆ R and satisfying (ϕ + ψ)∨ =
ϕ∨ + ψ∨, (ϕψ)∨ = ψ∨ϕ∨, and (ϕ∨)∨ = ϕ for all ϕ, ψ ∈ R; and

(iii) ϕ∨ϕ = ϕϕ∨ =: m ∈ Z≥0 with m = 0 if and only if ϕ = 0.
Then we have R = Z; or R ⊗ Q is a quadratic imaginary number field; or R ⊗ Q is a

definite quaternion algebra over Q.

Proposition 3.2.15. Let E be an elliptic curve over a field K. Then the Z-algebra End(E)
either coincides with Z, is an order in an imaginary quadratic number field, or is an order
in a definite quaternion algebra. Moreover, if K has characteristic 0, End(E) must be
commutative (and therefore must be Z or an order in an imaginary quadratic field).

Proof. The first claim comes from the observations summarized in the discussion above along
with Lemma 3.2.14. Now if K has characteristic 0, we may assume K ⊆ C by the Lefschetz
Principle (see [8, Chapter VI, §6]), and it suffices to show that End(E) is commutative for
any elliptic curve E over C. Indeed, it follows from Proposition 2.5.2 that any endomorphism
ϕ : E → E can be lifted uniquely to a C-linear map ϕ̃ : C → C which is an isomorphism if
and only if ϕ 6= 0. Obviously ϕ̃ is just a homothety z 7→ az for some a ∈ C with a = 0 if
and only if ϕ = 0, so we have an injection End(E) ↪→ C and End(E) is commutative.

In general, elliptic curves over fields of characteristic 0 have endomorphism rings equal
to Z, and it is considered to be exceptional if End(E) is instead an order in an imaginary
quadratic field. In this case, we say that E “has complex multiplication” or is “a CM elliptic
curve”.

Example 3.2.16. Let E be the elliptic curve over any field K of characteristic different
from 2 given by the equation y2 = x3 − x. Then we check that the map ϕ : E → E
given by (x, y) 7→ (−x, iy) is an endomorphism of E by noting that it is a morphism with
ϕ(0) = 0. Now we check that ϕ2 : E → E, which is given by (x, y) 7→ (x,−y), is in fact
the map [−1] : E → E. Therefore, we may identify ϕ with a square root of −1 in the
endomorphism ring, and it follows from Proposition 3.2.15 that End(E) ∼= Z[i] and E has
complex multiplication. In fact, it is possible to show that over C, this elliptic curve E is
isomorphic to C/〈1, i〉, from which it is apparent that the endomorphism ring is identified
with the ring of homotheties Z[i] ⊂ C.

3.2.4 The endomorphism ring in positive characteristic

For this subsection, we assume that E is an elliptic curve defined over a field K of char-
acteristic p > 0. For simplicity, we will assume that K is perfect, although most of the
below results would hold anyway with slight modifications. Our main goal is to investigate
the possible structures of End(E) in this case. First it is essential to define the Frobenius
isogeny.

Definition 3.2.17. For any integer r ≥ 0, let E(r) be the elliptic curve defined over K
by the equation given by raising all the coefficients of the equation defining E to the prth
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power. Then the (rth power) Frobenius isogeny Frr : E → E(r) is the map given by
(x, y) 7→ (xp

r
, yp

r
). In the case that K = Fpr , we have E = E(r) and Frr ∈ End(E) is called

the Frobenius endomorphism.

Note that each Frr is obviously a nonconstant morphism with Frr(0) = 0 and therefore
an isogeny; moreover, as the notation suggests, each Frr is the rth power of the Frobenius
map Fr := Fr1 : E → E(1). It is clear that each Frobenius isogeny Frr is purely inseparable
of degree pr from checking that (Frr)∗ : K(E(r))→ K(E) is the inclusion K(E)p

r
↪→ K(E).

It is also clear from basic field theory that if E ′ is another elliptic curve over K, then every
isogeny ϕ : E → E ′ factors as the composition of the purely inseparable map Frr : E → E(r)

for some r ≥ 0 and a separable map ϕsep : E(r) → E ′. In other words, Frr is the inseparable
part ϕinsep of ϕ.

The next result functions as a lemma both to Proposition 3.2.11 above (it almost imme-
diately implies the statement of part (d) for the inseparable case) and to Proposition 3.2.19
below.

Lemma 3.2.18. The multiplication-by-p map [p] : E → E is inseparable, and there exists
an isogeny ϕ′ : E(1) → E such that ϕ′ ◦ Fr = Fr ◦ ϕ′ = [p].

Proof. It can be shown either through direct computations or through a more abstract
argument using functoriality that for any elliptic curve over a field of any characteristic, if
ω ∈ Ω(E) is a holomorphic differential, we have [n]∗(ω) = nω for n ≥ Z. It follows that
since K has characteristic p, we have [p]∗(ω) = 0, and therefore, [p] : E → E is inseparable.
By the above discussion, we much have [p] = [p]sep ◦ Frr for some r ≥ 1 and some separable
map [p]sep : E(r) → E. The claim then follows by taking ϕ′ = [p]sep ◦ Frr−1.

One can see from the proof of Proposition 3.2.11(d) that the isogeny ϕ′ above is the dual
isogeny Fr∨. Our main tool in proving the following proposition will be studying this dual
isogeny.

Proposition 3.2.19. a) The following are equivalent:
i) E[pr] = 0 for any (every) r ≥ 1 (i.e. the map [p] : E → E is purely inseparable);

ii) Fr∨ is (purely) inseparable;
iii) End(E) is an order in a quaternion algebra.

Moreover, these statements also imply
iv) j(E) ∈ Fp2.

b) If the above equivalent conditions do not hold, then E[pr] ∼= Z/prZ for all r ≥ 0, and
if j(E) ∈ F̄p, then End(E) is an order in an imaginary quadratic field.

Remark 3.2.20. If the equivalent conditions in part (a) above do not hold and j(E) is
transcendental over Fp, then it is possible to show that in fact End(E) = Z.

Proof. We first show that (i) and (ii) are equivalent. It is immediately clear that E[p] = 0
implies that E[pr] = 0 for every r ≥ 1. Now Lemma 3.2.18 and the discussion below it show
that [p] : E → E factors as the composition Fr∨ ◦ Fr. Note that Fr obviously has degree p
and so Fr∨ also has degree p by Proposition 3.2.11(d). Moreover, the kernel of Fr is trivial
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since Fr is purely inseparable, so the kernel of [p] is trivial if and only if Fr∨ is also purely
inseparable.

Now we show that (ii) implies (iv). Assume that Fr∨ is inseparable. Then the inseparable
part of Fr∨ is some power of the Frobebius map Fr : E(1) → E(2). By comparing degrees,
we see that the inseparable part of Fr∨ is this Frobenius map, while the separable part is an
isomorphism E(2) ∼→ E. We note from the formula for the j-invariant that j(E(2)) = j(E)p

2
.

But j(E) = j(E(2)) by Proposition 3.2.2(b), so j(E) = j(E)p
2

and it follows that j(E) ∈ Fp2 .
Now assume (ii), and we will show (iii) by assuming that End(E) is commutative and

deriving a contradiction. If End(E) is commutative, then by Proposition 3.2.15 we have that
either End(E) = Z or End(E) is an order in an imaginary quadratic field. One can show
that for any isogeny ϕ : E → E ′, we have End(E ′) ⊗ Q = End(E) ⊗ Q (see Exercise 3.3.5)
and moreover that inseparability of [p] : E → E implies inseparability of [p] : E ′ → E ′ (by
checking separable and inseparable degrees of [p] ◦ϕ = ϕ ◦ [p]). We therefore get j(E ′) ∈ Fp2
since (ii) implies (iv). It follows (using Proposition 3.2.2(b) and the fact that Fp2 is finite)
that there are only finitely many isomorphism classes of elliptic curves over K̄ which are
isogenous to E.

We claim that there exists a prime integer ` such that the ideal (`) remains prime in
End(E ′) for every elliptic curve E ′ isogenous to E. If End(E) = Z, then each End(E ′)
is also Z and then the claim is trivial (we can take any `). If End(E) is an order in an
imaginary quadratic field, then each End(E ′) is an order in that same imaginary quadratic
field. Then it is an elementary exercise in algebraic number theory to show that there always
exists a prime integer ` such that (`) is a prime ideal in all of a given finite set of orders in
a fixed imaginary quadratic field. Note that this ` is different from p, since (p) decomposes
in End(E) as (Fr∨)(Fr).

Choose such a prime `, and note from Corollary 3.2.12 that E[`] ∼= Z/`Z⊕ Z/`Z. Thus,
we may choose a sequence of subgroups 0 = N0 ⊂ N1 ⊂ N2 ⊂ ... ⊂ E(K̄) with Ni

∼= Z/`iZ
for i ≥ 0, with none of these subgroups containing E[`r] for any r ≥ 1. By Proposition 3.2.6,
we see that this sequence of subgroups corresponds to a sequence of isogenies

E = E0
ϕ1→ E1

ϕ2→ E2
ϕ3→ ...

with Ei ∼= E/Ni and ker(ϕi) ∼= Ni/Ni−1 for each i ≥ 0. But as was observed above, there are
only finitely many elliptic curves isogenous to E up to isomorphism, so for some i, j ≥ 1 we
have Ei+j ∼= Ei and so the composition ϕi+j ◦ ...◦ϕi+1 : Ei → Ei+j ∼= Ei is an endomorphism
ψ ∈ End(Ei) with kernel isomorphic to Ni+j/Ni. Since deg(ψ) = `j and (`) is prime in
End(E ′), we have that j is even and ψ is the composition of [`j/2] with some isomorphism.
But this implies that E[`j/2] ⊆ Ni+j, a contradiction.

We finish the proof of (a) by showing that (iii) implies (ii). To do this, we assume
that (ii) is false (i.e. Fr∨ is separable) and show that then (iii) is false (i.e. End(E) is
commutative). Indeed, since Fr∨ is separable and has order p while Fr is purely inseparable,
we have #E[pr] = # ker((Fr∨)r) · # ker(Frr) = pr for any r ≥ 0. By a similar argument
to the one used to prove Corollary 3.2.12, we see that the only possible group structure for
E[pr] is given by Z/prZ.

We now claim that for any nonzero endomorphism ϕ ∈ End(E), there is some r ≥ 1
such that ϕ(E[pr]) 6= 0. Indeed, since ϕ has finite kernel, we get ϕ(E[pr]) 6= 0 for any r
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such that pr > # ker(ϕ). It follows that the obvious map from End(E) to the ring of Zp-
endomorphisms of lim

←r
E[pr] is injective. (Here Zp denotes the ring of p-adic integers, while

the inverse limit above is taken with respect to multiplication-by-p maps E[pr] → E[pr−1]
and is obviously a Zp-module.) But since E[pr] ∼= Z/prZ, we have lim

←r
E[pr] ∼= Zp and so

EndZp(lim←r
E[pr]) ∼= Zp is commutative, so End(E) is commutative, as desired.

To prove (b), we assume that the equivalent conditions (i), (ii), (iii) in (a) do not hold.
It was already shown above that then E[pr] ∼= Z/prZ for r ≥ 0. Now we assume in addition
that j(E) ∈ F̄p and proceed to show that End(E) ) Z. Clearly there is some r ≥ 1 such
that j(E) ∈ Fpr , and so it follows from Proposition 3.2.2(c) that we may assume that E
is defined over Fpr . Then we have the Frobenius endomorphism Frr ∈ End(E). Suppose
that Frr = [n] ∈ Z. Then since pr = deg(Frr) = deg([n]) = n2 by Proposition 3.2.11(c), we
have that r is even and n = ±pr/2. Since Fr is purely inseparable, this implies that [pr/2]
and hence also [p] are purely inseparable, which contradicts condition (i) of (a). Therefore,
Frr /∈ Z and End(E) ) Z.

The fact that any elliptic curve E satisfying the equivalent conditions in part (a) of
the above proposition must have j(E) ∈ Fpr suggests that such elliptic curves are rather
exceptional (since Fpr is a small subfield of any algebraically closed field of characteristic
p > 0). This is reflected in the terminology defined as follows.

Definition 3.2.21. If E is an elliptic curve over a field of charaacteristic p > 0, then E
is said to be supersingular if E satisfies the equivalent conditions in Proposition 3.2.19(a)
and is said to be ordinary otherwise.

We end by noting that the notion of supersingularity has nothing to do with singularities
in the context of algebraic geometry (after all, every elliptic curve is nonsingular). This
potentially confusing terminology came about because the word singular was commonly
used to mean “unusual” or “special”, and certainly supersingular elliptic curves are unusual
among elliptic curves over fields of characteristic p since their j-invariants lie in the small
field Fp2 .

3.3 Exercises

For all of the following exercises, we retain the assumption that K is not a field of charac-
teristic 2.

Exercise 3.3.1. Let C1 and C2 be smooth curves of genus g1 and g2 respectively and ϕ :
C1 → C2 is a nonconstant separable morphism of degree d, and assume that the characteristic
of K doesn’t divide any of the ramification indices. Recall the Hurwitz Formula

2g1 − 2 = d(2g2 − 2) +
∑

P∈C1(K̄)

(eP − 1),
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where eP is the ramification index of ϕ at the point P (note that this is equal to 1 for all
but finitely many P ∈ C1(K̄)).

a) Suppose that C1 is an elliptic curve. Show that C2 can also be given the structure of
an elliptic curve if and only if ϕ is unramified eveerywhere.

b) Show that every elliptic curve E over K has a degree-2 morphism ϕ : E → P1
K which

is ramified at exactly 4 points. Show furthermore that these four points are the elements of
the 2-torsion subgroup E[2].

c) Prove the converse statement that if ϕ : C → P1
K is a morphism of degree 2 which

is ramified at exactly 4 points, then C is isomorphic over K̄ to an elliptic curve E over K
such that these four ramification points correspond to the elements of E[2]. (Hint: choose
one of the ramification points to be the distinguished point O ∈ E(K) and study the only
nontrivial automorphism ι : C → C satisfying ϕ ◦ ι = ϕ. It might be easier to assume that
K does not have characteristic 3, which allows us to reduce the cubic polynomial defining E
by getting rid of the x2-term.)

Exercise 3.3.2. Let E is an elliptic curve over K given by an equation of the form y2 =
f(x) = (x−α1)(x−α2)(x−α3) for distinct α1, α2, α3 ∈ K̄. For n ≥ 1, write K(E[n]) for the
(algebraic) extension generated over K by coordinates of all of the points in E[n] ⊂ E(K̄).

a) Show that elements of the absolute Galois group Gal(K̄/K) permute the points in
each E[n]. Conclude that each field extension K(E[n])/K is Galois.

b) Show thatK(E[2]) = K(α1, α2, α3), so that the Galois group of the extensionK(E[2])/K
is canonically isomorphic to the Galois group of the cubic polynomial f ∈ K[x].

c) Compute K(E[4]) = K(α1, α2, α3,
√
α1 − α2,

√
α1 − α3,

√
α2 − α3). (This is difficult

but can be proven either by direct computations using doubling formulas, by directly con-
sidering divisor classes in Pic0(E), or by formulas for computing 2-descent given in [8, §X.1].
For formulas for generators of K(E[8])/K, see my article [9]!)

Exercise 3.3.3. Let β, γ ∈ K̄ be distinct and nonzero and consider the elliptic curves E
and E ′ over K̄ given by the following Weierstrass equations:

E : y2 = x(x− β)(x− γ), E ′ : y2 = x3 + 2(β + γ)x2 + (β − γ)2x.

Let ϕ : E → E ′ be the morphism over K given by (x, y) 7→ ( y
2

x2
, y(βγ

x2
− 1)).

a) Show that ϕ is an isogeny of degree 2 whose kernel is cyclically generated by (0, 0) ∈
E[2].

b) Define the elliptic curve E ′′ and the isogeny ϕ′ : E ′ → E ′′ in the same way that
E ′ and ϕ were defined respectively, except with respect to β′ := −(β + γ) + 2

√
βγ and

γ′ := −(β + γ) − 2
√
βγ. Check that the kernel of ϕ′ ◦ ϕ is E[2] and that there is an

isomorphism E ′′
∼→ E defined over K. Conclude that this isomorphism composed with ϕ′ is

the dual isogeny ϕ∨ (at least up to an automorphism of E).
c) Use these formulas to construct an elliptic curve E over Q with End(E) ∼= Z[

√
−2].

Exercise 3.3.4. Prove Lemma 3.2.14 (this is a lengthy but elementary algebraic argument).
As an immediate corollary, show that if End(E) is commutative, then the dual of any endo-
morphism ϕ ∈ End(E) is its complex conjugate.
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Exercise 3.3.5. If ϕ : E1 → E2 is an isogeny of elliptic curves, show that there is a canonical
Q-algebra isomorphism End(E1)⊗Q ∼→ End(E2)⊗Q. (Hint: use the dual isogeny.)

Exercise 3.3.6. Assume for this exercise that K doesn’t have characteristic 3.
a) Prove that the automorphism group Aut(E) of an elliptic curve E over K is always

finite and cyclic and of order 2, 4, or 6. Show that there is only one elliptic curve E up to
isomorphism with Aut(E) ∼= Z/4Z and show the same for Aut(E) ∼= Z/6Z. (Hint: refer to
the proof of Proposition 3.2.2(c).)

b) Note that the absolute Galois group Gal(K̄/K) acts on Aut(E). Show that as a
Gal(K̄/K)-module, Aut(E) is isomorphic to the multiplicative group 〈ζd〉 ⊂ K× where d
is its order and ζd is a primitive dth root of unity. Check that we have ϕ∨ = ϕ−1 for any
ϕ ∈ Aut(E).

Exercise 3.3.7. Let E be an elliptic curve over a finite field Fpr . Clearly the group E(Fpr)
is finite, and it is natural to ask how large it is. The purpose of this exercise is to prove the
Hasse Bound, which says

|#E(Fpr)− pr − 1| ≤ 2pr/2.

You may assume without proof that the endomorphism Frr − 1 ∈ End(E) is separable (but
this can be proven by direct computation using the invariant differential).

a) Show that #E(Fpr) = deg(Frr − 1).
b) Verify using Corollary 3.2.13 that for any endomorphisms ϕ, ψ ∈ End(E), we have

| deg(ϕ− ψ)− deg(ϕ)− deg(ψ)| ≤ 2
√

deg(ϕ) deg(ψ).
c) Conclude that the Hasse Bound holds.
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