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Abstract. Given a hyperelliptic curve Y : y2 = f(x) over a complete discrete valuation field K
with algebraically closed residue field, we define a semistable model of Y over the ring of integers of
a finite extension of K which we call the relatively stable model Yrst of Y . Our goal is to compute
this model as the normalization in K(Y ) of the model X (rst) of X := P1

K given by the quotient of
Yrst by the hyperelliptic involution. In the case of residue characteristic p 6= 2, the components of
the special fiber (X (rst))s correspond precisely to the non-singleton clusters of roots of the defining
polynomial f , i.e. the subsets of roots of f which are closer to each other than to the other roots of
f with respect to the induced discrete valuation on the splitting field. This relationship, however,
is far less straightforward in the p = 2 case, which is our main focus. We describe recent results
showing that, when p = 2, for each cluster containing an even number of roots of f , there are
0, 1, or 2 components of (Yrst)s corresponding to it, and we discuss a direct method of finding
and describing them. We also define a polynomial F (T ) ∈ K[T ] whose roots allow us to find the
components of (Yrst)s which are not connected to even-cardinality clusters. We finish by describing
how to find relatively stable models of hyperelliptic curves in genus 1 and 2.

1. Introduction

The focus of this paper is to investigate the reduction types of hyperelliptic curves over discrete
valuation fields. Given a complete discrete valuation field K of characteristic different from 2 with
algebraically closed residue field, our starting point is to consider a hyperelliptic curve Y over K;
that is, Y/K is a smooth projective curve of positive genus admitting a degree-2 morphism onto
the projective line P1

K .
This paper is concerned with constructing a semistable model of a given hyperelliptic curve Y/K

and understanding the structure of the special fiber of a semistable model of Y . As this problem is
already entirely understood in the case that the residue characteristic is not 2 and the procedure in
that case can be described entirely in terms of the distances between the branch points with respect
to the p-adic metric on K, our primary focus will be on the case where the residue characteristic is
2. The increased complexity of the problem for this case arises from the fact that a hyperelliptic
curve comes with a degree-2 map to the projective line: the fact that this degree is the same as
the residue characteristic implies that we are in a “wild setting”. Problems involving reduction of
curves in the “wild case”, in which one studies semistable models of curves with a degree-p map
to the projective line over residue characteristic p, have been investigated in a number of works in
recent decades (see §1.4 below), but mainly in the situation where the branch points of the map
Y → P1

K are p-adically equidistant. In this article, we will consider general hyperelliptic curves
over residue characteristic 2, with a particular focus on the relationship between the combinatorial
data of how the branch points are “clustered” and the structure of the special fiber of a semistable
model. The results presented here come from the authors’ preprint [8], in which they are rigorously
proved.

1.1. Hyperelliptic curves. In this subsection, the only assumption about the ground field K that
we adhere to is that the characteristic is different from 2. In this situation, it is well known that
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an affine chart for a hyperelliptic curve Y/K of genus g ≥ 1 is given by an equation of the form

(1) y2 = f(x) = c
d∏
i=1

(x− ai),

where f(x) ∈ K[x] is a polynomial of degree d ∈ {2g+ 1, 2g+ 2} that does not have multiple roots,
c ∈ K× is the leading coefficient of f(x), and the elements ai ∈ K̄ are the roots of f . We call f the
defining polynomial of (this chart of) the hyperelliptic curve Y . The degree-2 morphism of Y onto
the projective line is given simply by the coordinate function x; this morphism is branched precisely
at each of the roots of f as well as, in the case that d = 2g + 1 (in other words, when f has odd
degree), at the point ∞. After applying an appropriate automorphism of the projective line (i.e. a
suitable change of coordinate) which moves one of the branch points to ∞, we obtain an equation
of the form in (1) with d = 2g + 1; we adhere to this assumption about f throughout this paper.
Our aim will be showing how to explicitly form semistable models of Y over finite extensions of K.
We more fully explain various aspects of the problem below.

1.2. Semistable models of curves. For the rest of this paper, we assume that the ground field,
in addition to having characteristic different from 2, is a complete discrete valuation field; we denote
its ring of integers by R ⊂ K and its residue field by k, which we assume to be algebraically closed.

A model of C over R′, where R′ is the ring of integers of some finite extension K ′ ⊇ K, is a
normal projective flat R′-scheme whose generic fiber is isomorphic to C over K ′. In this paper,
given a smooth projective geometrically connected curve C/K, we use the same letter in curly font
to denote a model C/R′ defined over the ring of integers R′ of some finite extension K ′/K, and we
denote its special fiber by Cs/k.

We say that a model C is semistable if its special fiber Cs is a reduced k-curve with at worst
nodes as singularities. The following groundbreaking theorem was proved by Deligne and Mumford
in [5] and then through independent arguments by Artin and Winters in [1] (see also [11, Section
10.4] for a detailed explanation of the arguments in Artin-Winters).

Theorem 1.1. Every smooth projective geometrically connected curve C over K achieves semistable
reduction over a finite extension K ′ ⊇ K, i.e. C admits a semistable model Css over R′, where R′

is the ring of integers in K ′.

The above result is not constructive and does not tell us how to find a semistable model Css or
exactly how large an extension K ′ ⊇ K is needed in order to define it. It moreover does not specify,
for a given curve C/K, anything about the structure of the special fiber (Css)s. It is therefore
natural to ask whether there is any general method by which we may construct a semistable model
Yss of a hyperelliptic curve Y/K defined by an equation of the form in (1).

1.3. Special fibers of semistable models of curves. In this paper, we are interested not only
in how to construct a semistable model Yss of a hyperelliptic curve Y , but also in how certain
characteristics of the defining polynomial may determine the structure of the special fiber of such a
semistable model. The special fiber (Yss)s of a semistable model Yss of a curve Y/K by definition
consists of reduced components which meet each other only at nodes. Each node, viewed as a point
in Yss, has a thickness, i.e. an integer µ > 0 such that the completed local ring at the node is
isomorphic to R[[t1, t2]]/(t1t2−a) for some a ∈ R, with v(a) = µ. The structure of the special fiber
(Yss)s can be described entirely in terms of the set of its irreducible components, the genus of the
normalization of each of these components, the data of which components intersect which others
at how many nodes, and the thicknesses of the nodes. The sum of the genera of the normalizations
of the irreducible components is known as the abelian rank of (Yss)s, while the number of loops in
the configuration of components and their intersections (i.e. the number of loops in the dual graph
of (Yss)s) is known as the toric rank of (Yss)s. The property of being semistable implies that the
sum of these two ranks equals the genus of Y .
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Replacing a semistable model Yss of Y over R′ with another semistable model of Y over R′′

(where R′ and R′′ are the ring of integers of possibly different extensions of K) does not affect its
abelian or toric rank, and therefore these ranks are intrinsic to the curve Y itself and particularly
interesting to determine (meanwhile, the thicknesses of the nodes change in a predictable manner
between semistable models over different extensions of R).

In order to obtain and make precise our main results about special fibers of semistable models of
hyperelliptic curves, it will be necessary to define a particular semistable model of a hyperelliptic
curve Y , which we call the relatively stable model and denote by Yrst, using given the degree-2 cover
Y → X := P1

K . This allows us to determine and describe the model Yrst entirely in terms of an

associated model X (rst) of the projective line X. Any model of the projective line over a discrete
valuation field K can, in turn, be described in terms of closed discs in K, reducing much of our
problem to a determination of collection of discs in K which yield the relatively stable model Yrst/R′

of a given hyperelliptic curve Y/K. In particular, we define the valid discs (in Definition 2.5) as
crucial subset of this collection. All of this is discussed in §2 below. Then, in §3, we define the
cluster data associated to a hyperelliptic curve and directly relate this to the valid discs; in the
p = 2 setting, this is our main result and is given as Theorem 3.4. The following two sections are
devoted to our method of finding all valid discs associated to a hyperelliptic curve: §4 focuses on
finding valid discs which contain (clusters of) roots of f , while §5 focuses on finding centers of valid
discs which do not contain roots of f . In §6 we briefly present our results which characterize the
structure of the special fiber of the relatively stable model (in particular, its toric rank). Finally,
in §7, we present an application of our results to the relatively stable model of a hyperelliptic curve
of genus 2.

1.4. Related results in other works. A hyperelliptic curve is a special case of a superelliptic
curve, i.e. a curve defined by an equation of the form yn = f(x) for some n ≥ 2. There have been
a number of works discussing semistable models of superelliptic curves. When the exponent n in
the equation for a superelliptic curve is not divisible by the residue characteristic p, the process
of constructing a semistable model is relatively straightforward and is provided in [2, §3], [3, §4],
[6, §4, 5] (for hyperelliptic curves, using the language of clusters), and [9] (for hyperelliptic curves,
using the language of stable marked curves), as well as earlier works.

The existing results for the wild case of semistable reduction of superelliptic curves, i.e. when
the defining equation is of the form yp = f(x) where p is the residue characteristic, have been far
more limited. To the best of our knowledge, investigations into this case began with Coleman, who
in [4] outlined an algorithm for changing coordinates in such a way that the defining equation is
converted to a form whose reduction over the residue field does not describe a curve which is an
inseparable degree-p cover of the line; when p = 2, this is more or less equivalent to our notion
of part-square decompositions which will be introduced in §4. This idea is further developed by
Lehr and Matignon in [12] and later in [10] (among several other works). The wild case is also
discussed in [3, §4], in which several examples are computed and interpreted in terms of rigid
analytic geometry; the working of these examples is mainly done through clever guessing rather
than a direct algorithm, however.

Moreover, in each of [12] and [10], a polynomial over the ground field is defined whose roots are
the centers of all discs which give rise to components of the special fiber; these polynomials (the
p-dérivée in [12, Définition 2.4.1] and the monodromy polynomial in [10, Definition 3.4]) are quite
distinct but each is defined similarly and plays a similar role to our polynomial F (T ) ∈ K[T ] given
in Definition 5.1 below, whose roots in the geometrically equidistant case certainly provide centers
of all the valid discs.

Our work differs from the prior research discussed above in that our major focus is on the
relationship between clusters of roots and the structure of the special fiber of a semistable model
of a hyperelliptic curve when the residue characteristic is 2; to the best of our knowledge, the only
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specific case in terms of cluster data which has been investigated where equidistant geometry is not
assumed is in the recent article [7], which treats a case involving an even number of roots clustering
in pairs.

We finish this subsection by remarking that our paper does not prioritize much focus towards
describing the finite extension of K over which we are constructing our semistable (relatively stable)
model of Y or determining the minimal extension of K over which Y achieves semistable reduction
(although in building Yrst, we try to be economical in the extension of K required). However, as our
results are constructive, it is fairly straightforward to compute the (necessarily totally ramified)
extension K ′/K over which Yrst is defined. In general, the extension K ′/K is obtained from
(possibly) a sequence of quadratic extensions of the subfield K ′′ ⊂ K ′ over which the associated

model X (rst) of the projective line is defined using changes of coordinates x = αi + βixi for some
elements αi ∈ K̄ and βi ∈ K̄×. In practice, each scaling element βi may be chosen to be any
element of a prescribed valuation, while a given translating element αi may be chosen to be a root
of f (and thus already in the splitting field) when the corresponding valid disc contains roots of f ;
it is only in the case where there are valid discs not containing roots of f that one may have to
choose αi to be a root of the (generally high-degree) polynomial F (T ) ∈ K[T ] defined in §5 below.

1.5. Notational conventions. Given an algebraic extension K ′/K, an element α ∈ K ′ and a
rational number b ∈ v(K ′), we denote by Dα,b ⊂ K ′ the disc centered at α with (logarithmic)
radius b, i.e. we let Dα,b = {z ∈ K ′ | v(z − α) ≥ b}.

Given a polynomial f(z) ∈ K ′[z], we write v(f) for its Gauss valuation, i.e. writing f(z) =
c0 + c1z + · · ·+ cdz

d, we let v(f) = mini v(ci).

1.6. Acknowledgements. The authors would like to thank Fabrizio Andreatta for proposing that
the first author, as work for his Masters thesis, join the early stages of the research project of
the second author, as well as for providing guidance and helpful discussions to the first author
throughout his research work in the Masters program.

2. Relatively stable models of Galois covers of the projective line

In this section, we assume Y → X to be a Galois covering map of curves over K with Galois
group G and that Y has positive genus, keeping in mind that the situation we care about is when
Y is a hyperelliptic curve with its degree-2 map to X := P1

K . Given a curve Y equipped with such
a covering map, we are able to define a useful generalization of the stable model of Y (which, unlike
the stable model, is also defined when g(Y ) = 1), which we provide in the following subsection.

2.1. Definition of the relatively stable model. In order to define this particular semistable
model of Y , we need to make some preliminary definitions.

Definition 2.1. Let Y be a semistable model of Y which is also acted upon by G, and let V be a
component of the special fiber Ys.

(a) We say that V is (−1)-line if we have V ∼= P1
k and if there is exactly 1 node of Ys lying on

V .
(b) Write Ṽ for the normalization of V . We say that V is a horizontal (−2)-curve if we have

Ṽ ∼= P1
k, if there are exactly 2 points P1, P2 ∈ Ṽ (k) lying over the intersection of V with the

set of nodes of Ys, and if G fixes both P1 and P2.

Definition 2.2. A model of Y of Y is said to be relatively stable with respect to the Galois cover
Y → X if it satisfies the following properties:

(i) Y is semistable and also acted upon by G, so that the cover Y → X extends to a map
Y → X := Y/G;

(ii) no component of the special fiber Ys is a (−1)-line or a (−2)-curve; and
(iii) there is no smooth point of the special fiber Xs whose inverse image in Ys is a node.
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Remark 2.3. We record the following facts about semistable models of a covering Y → X.

(a) A relatively stable model Yrst of Y , if it exists, is unique, and remains relatively stable
under any extension of the ground field K.

(b) Suppose that g(Y ) ≥ 2 or that g(X) = 0. Then the curve Y has a relatively stable model
over the ground field K if and only if it has semistable reduction over K. Moreover, if
Y → X is the trivial map, then the relatively stable model is just the stable model of Y .

(c) Suppose that Y/K has a relatively stable model Yrst/R, and write X (rst) = Yrst/G so that

the covering Y → X extends to a map Yrst → X (rst). Since no node in (Yrst)s maps to a

smooth point in (X (rst))s by property (iii) in Definition 2.2, we have that the inverse image

of the set of nodes in (X (rst))s coincides with the set of nodes in (Yrst)s.

We end this subsection by pointing out a simple but important property of the relatively stable
model, which will allow us to build relatively stable models of hyperelliptic curves directly from
models of the projective line.

Proposition 2.4. Suppose that Y has a relatively stable model Yrst and define the map Yrst →
X (rst) as above. If a component V of the special fiber (X (rst))s is a smooth k-curve, then its inverse

image in (Yrst)s also is. In particular, if all irreducible components of (X (rst))s are smooth k-curves,

then the same is true of the irreducible components of (X (rst))s.

2.2. Discs and models of the projective line. We now resume our assumption that Y → X :=
P1
K is a hyperelliptic curve given by the equation in (1) with its degree-2 map to the projective line

given by the standard coordinate x. We assume that Y has a relatively stable model Yrst over the
ground field K and define the model X (rst) of the projective line X as above.

Fortunately, it is very straightforward to describe models of the projective line, which we do in
the following manner. Each smooth model of X = P1

K over the ring of integers R is isomorphic
to P1

R and is determined by a choice of coordinate xα,β := β−1(x − α). Any two such models are
isomorphic over R if and only if we have v(α2 − α1) ≥ v(β1) = v(β2), where xα1,β1 and xα2,β2 are
the corresponding coordinates. This condition is equivalent to the equality of the discs Dαi,v(βi) for
i = 1, 2, so the smooth models of X over R are in bijection with the set of discs in K. Any model
X of X over R is then the compositum of a finite collection of smooth models of X over R (that
is, X is the minimal model of X which dominates each smooth model in the collection), and this
corresponds to a finite collection of such discs in K.

Given any disc D ⊂ K, we write XD/R for the corresponding smooth model of X and, for any
model X of X, write XD ≤ X if X dominates XD. Proposition 2.4 along with the definition of the
relatively stable model implies that knowledge of the model X (rst) of the projective line determines
the relatively stable model Yrst: for each (smooth) component of the special fiber (X (rst))s, which
corresponds to a smooth model XD of X, its normalization YD in K(Y ) corresponds to a component
(resp. 2 components) of (Yrst)s if (YD)s is an irreducible curve (resp. 2 disjoint lines each isomorphic
to P1

k). Our task of computing the relatively stable model of Y therefore essentially comes down to

identifying which discs D ⊂ K satisfy XD ≤ X (rst).
We now define a term which we will use throughout the rest of the paper in order to refer to

components of the relatively stable model of a hyperelliptic curve.

Definition 2.5. With the above notation and assumptions, the disc D ⊆ K is a valid disc if it
satisfies XD ≤ X (rst) and if the quadratic cover (YD)s → (XD)s is separable.

We note that our notion of valid disc differs from the one in [6], although in both cases valid
discs are used to build a particular semistable model of Y with desired properties.

Remark 2.6. The discs D such that XD ≤ X (rst) which are not valid discs are in some sense
inessential in the context of understanding the invariants of the special fibers of semistable models
of Y listed in §1.3: for such a disc D, the strict transform of XD in (Yrst)s is just a projective line
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only which needs to be included as a component of (Yrst)s because contracting it would result in a
singular point with ≥ 3 branches, which would violate semistability. Our focus for the rest of the
paper is therefore on the valid discs D and the components of (Yrst)s which correspond to them.

3. The cluster data associated to a hyperelliptic curve

In the p 6= 2 setting, the valid discs as defined in the previous section correspond precisely to
certain subsets of roots of the defining polynomial of our hyperelliptic curve Y which we call the
clusters associated to Y , and our primary focus in this paper is relating valid discs to clusters in
the p = 2 setting.

3.1. Cluster data. One näıve attempt to construct a semistable model of a hyperelliptic curve
Y is to use the scheme Y over the ring of integers R using the equation in (1) (as long as the
coefficients of this equation lie in R, which one can always assume after appropriately scaling x and
y). While one may verify through elementary computations that this model Y always fails to be
semistable over residue characteristic 2, in the p 6= 2 setting, the semistability of Y can be easily
seen to be equivalent to the conditions that

(i) the roots of f are equidistant (i.e. the valuations of the difference between the roots are all
equal) so that Ys is smooth; and

(ii) the roots of f are equidistant except for certain pairs of roots of f which are closer to
each other with respect to the discrete valuation of K (so that each pair maps to a root of
multiplicity 2 of the reduced polynomial f̄ and produces a node of Ys).

This suggests that the construction of semistable models of Y over finite extensions of K is
closely related to the data of which subsets of roots of the defining polynomial f “cluster” together
with respect to the distance function on the splitting field of f . This notion is made precise in [6]
by defining the cluster data associated to a hyperelliptic curve Y over a discrete valuation field K
as follows.

Definition 3.1. Given a hyperelliptic curve Y/K defined by an equation of the form given in (1),
let R denote the set of roots of f and assume that we have R ⊂ K. A cluster of R is a nonempty
subset s ⊆ R satisfying s = R∩D for some disc D ⊂ K. The depth d(s) of a cluster s is given by

(2) d(s) = min
z,z′∈s

{v(z − z′)}.

The set of pairs (s, d(s)), where s varies among all clusters of R, is called the cluster data of R,
or the cluster data associated to the hyperelliptic curve Y .

One advantage of defining the relatively stable model of a hyperelliptic curve as we have done is
that in the p 6= 2 setting, the components of this model are determined by the cluster data of the
hyperelliptic curve in the simplest way possible.

Theorem 3.2. In the p 6= 2 setting, there is a one-to-one correspondence between non-singleton
clusters and valid discs, given by mapping a cluster s to the minimal disc Ds which contains it. In
other words, the valid discs are precisely those discs that minimally cut out the clusters of R.

In the situation of Theorem 3.2, the model Yrst is formed in the following way. Given a cluster
s of roots of the defining polynomial f , choose an element α ∈ s and an element β ∈ K× satis-
fying v(β) = d(s). Then the corresponding smooth model XD of the projective line X is given
by the coordinate xα,β := β−1(x − α). Meanwhile, let fα,β(x) ∈ K[x] be the polynomial such
that fα,β(xα,β) = f(x). After scaling y by an element of appropriate evaluation in the (unique)
quadratic extension of K, from the standard equation in (1) we obtain an equation of the form
y2 = γ−1fα,β(xα,β), where γ ∈ K× is an element whose valuation equals the minimal valuation
among the coefficients of the polynomial fα,β. This new equation defines a model YDs of Y , defined
over an extension R′ ⊇ R which is at most quadratic, which is the normalization of the model of
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X corresponding to the disc Ds in the function field K ′(Y ) (where K ′ is the fraction field of R′).
The desired semistable model Yss is comprised of these normalizations. The idea is illustrated by
the following example.

Example 3.3. Let K = Qunr
p for some p ≥ 5 and

(3) f(x) = x(x− p3)(x− p)(x− 1)(x− 1 + p4)(x− 2)(x− 3).

The set of roots of f is R := {0, p3, p, 1, 1− p4, 2, 3}. The clusters of these roots (i.e. the subsets s
consisting of roots which are closer to each other than they are to the roots in Rr s) are

s0 := R, s1 := {0, p3, p}, s2 := {0, p3}, s3 := {1, 1− p4},
as well as each of the singleton subsets of R (which we ignore). The data of these clusters is
represented by the following diagram.

cluster data of R : 0 p3 p 1 1− p4 2 3
s2

s1 s3
s0

Corresponding to each cluster si is a smooth model of X given by the coordinate xi, and these
coordinates may be defined as

(4) x = x0 = px1 = p3x2 = p4(x3 − 1).

We define corresponding coordinates yi by scaling y by suitable elements of Qp(
√
p) as

y = y0 = p3/2y1 = p7/2y2 = p4y3.

We now define corresponding models Yi/Zunr
p [
√
p] of Y/Qunr

p (
√
p) for i = 0, 1, 2, 3, given by the

below equations.

Y0 : y20 = f(x) = f(x0)

Y1 : y21 = p−3f(x) = x1(x1 − p2)(x1 − 1)(px1 − 1)(px1 − 1 + p4)(px1 − 2)(px1 − 3)

Y2 : y22 = p−7f(x) = x2(x2 − 1)(p2x2 − 1)(p3x2 − 1)(p3x2 − 1 + p4)(p3x2 − 1)(p3x2 − 2)

Y3 : y23 = p−8f(x) = (p4x3 − 1)(p4x3 − 1− p3)(p4x3 − 1− p)(x3)(x3 − 1)(p4x3 − 2)

(5)

Their respective reductions (that is, their special fibers (Yi)s) over the residue field Fp are as follows.

(Y0)s : y20 = x30(x0 − 1)2(x0 − 2)(x0 − 3)

(Y1)s : y21 = 6x21(x1 − 1)

(Y2)s : y22 = −6x2(x2 − 1)

(Y3)s : y23 = 2x3(x3 − 1)

(6)

The desingularizations of each of these special fibers give rise to the components of the special fiber
of the desired semistable model Yss: here (Y0)s contributes a smooth component V0 of genus 1;
(Y1)s contributes a line V1 which intersects V0 at a single node; (Y2)s contributes a line V2 which
intersects V1 at 2 nodes; and (Y3)s contributes a line V3 which intersects V0 at 2 nodes. The toric
rank of (Yss)s is 2, coming from the fact that there are exactly 2 even-cardinality clusters.

3.2. The relationship between clusters and the relatively stable model when p = 2.
When the residue characteristic of K is 2, it is natural to ask whether a semistable model of Y can
be constructed by a procedure governed entirely by the associated cluster data in this way, or in
other words, whether there is some analog of Theorem 3.2 for working over residue characteristic 2.
In short, the answer is “no”, as it turns out that in the p = 2 setting, valid discs do not correspond
in this way in a one-on-one manner with clusters, as is shown in particular by parts (a) and (b) of
Theorem 3.4 below.
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Theorem 3.4. Assume all of the above set-up for a hyperelliptic curve Y/K of genus g given by
an equation of the form y2 = f(x) ∈ K[x], where the polynomial f has degree 2g + 1, and assume
that the residue characteristic of K is 2. Let Yrst/R′ be the relatively stable model of Y , where R′

is the ring of integers of an appropriate finite field extension K ′ ⊇ K. Let R ⊂ K̄ denote the set
of roots of f . For any even-cardinality cluster of roots s ( R, we write s′ for the minimal cluster
which properly contains s (which always exists since R itself is a cluster and has odd cardinality).

The clusters of roots in R and the valid discs associated to Y are related in the following manner.

(a) Given a valid disc D ⊆ K̄, the cardinality of D∩R is even (and we may have D∩R = ∅).
(b) If a cluster s has even cardinality, there are either 0, 1, or 2 valid discs D ⊆ R′ such that

either D ∩R = s or D is the smallest disc containing s′.
(c) Let s be an even-cardinality cluster of relative depth m := δ(s). There exists a rational

number Bf,s ∈ Q≥0, which is independent of the relative depth of s in the sense of Remark
3.5 below, such that
(i) if m > Bf,s, the number of valid discs as in part (b) is “2”;

(ii) if m = Bf,s, the number of valid discs as in part (b) is “1”; and
(iii) if m < Bf,s, the number of valid discs as in part (b) is “0”.

(d) Given an even-cardinality cluster s, the bound Bf,s from part (d) satisfies Bf,s ≤ 4v(2). If
we furthermore assume that s and s′ each have a maximal subcluster of odd cardinality (e.g.
a maximal subcluster which is a singleton), we have the inequality

(7) Bf,s ≥
( 2

|s| − 1
+

2

2g + 1− |s|

)
v(2).

Remark 3.5. The rational number Bf,s given in part (c) of the above theorem does not depend
on the depth δ(s) in the following sense. Given a center α of the minimal disc Ds which contains
s, let s[λ] = {λ(a−α) +α | a ∈ s} for some λ ∈ K̄× such that v(λ) > −δ(s), so that s[λ] is a scaled
version of s and is a cluster in R[λ] := s[λ] t (Rr s) with relative depth δ(s[λ]) = δ(s) + v(λ). Then
we have Bf[λ],s[λ] = Bf,s. In this sense, loosely speaking, we may view Bf,s as a sort of “threshold”
for the depth of s at which we obtain 1 valid disc linked to s and above which we obtain 2 valid
discs linked to s.

Theorem 3.4 can be viewed as a vast generalization of the results in [14], where the second author
explicitly constructed semistable models of elliptic curves with a cluster of cardinality 2 and depth
m (as well as elliptic curves with no even-cardinality clusters). The threshold for m above which
there are 1 or 2 valid discs containing that cardinality-2 cluster which is found in [14] comes as the
following easy corollary to the above theorem; we remark that this corollary can be deduced also
from standard formulas for the j-invariant of an elliptic curve (specifically, the particular choice of
power of 2 multiplied to the rest of the formula, which influences the valuation of the j-invariant
in residue characteristic 2, as can be seen for instance in the Legendre case as in [13, Proposition
III.1.7]).

Corollary 3.6. Suppose that we are in the g = 1 case of the situation in Theorem 3.4 and that s
is a cluster of cardinality 2. Then we have Bf,s = 4v(2).

Proof. The parent cluster of s (i.e. the minimal cluster strictly containing s) is s′ = R, which has
cardinality 3. It is clear that both s and s′ have a singleton child cluster (i.e., a maximal subcluster
consisting of only one root). Now, Theorem 3.4(d) gives that Bf,s ≤ 4v(2) and

(8) Bf,s ≥
(2

1
+

2

1

)
v(2) = 4v(2).

The equality Bf,s = 4v(2) follows. �

Examples of computations which yield the desired model Yrst in the case that m ≤ 4v(2) are
given as [14, Examples 2 and 3]. An example for the m > 4v(2) case is given as [14, Example 9],
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except that there a semistable model whose special fiber has a single (nodal) component, rather
than the relatively stable model Yrst, is found.

4. Finding valid discs containing clusters

The standard approach to finding semistable models of hyperelliptic curves over residue charac-
teristic 2, which was introduced by Coleman in [4], involves expressing polynomials fα,β(xα,β) as
the sum of the square of a polynomial qα,β(xα,β) plus a “remainder” polynomial ρα,β(xα,β), where,
for chosen elements α ∈ K̄ and β ∈ K̄× we define the coordinate xα,β = β−1(x − α) and fα,β
to be the “translated and scaled” polynomial such that fα,β(xα,β) = f(x). Such a decomposition

of fα,β allows us to replace y with γ1/2y + qα,β(xα,β) and write the standard equation (1) for our
hyperelliptic curve Y as

(9) y2 + 2γ−1/2qα,βy = γ−1ρα,β,

for some choice of scalar γ ∈ K̄× of appropriate valuation. If the element α ∈ K̄ and the valuation of
the element β ∈ K̄×, as well as the polynomials qα,β, ρα,β ∈ K(α, β)[xα,β] are chosen appropriately,
the coefficients in (9) are all integral and the model YDα,v(β)/R defined by the equation in (9) is the

normalization of XDα,v(β) in K(Y ); moreover, these parameters may be chosen such that Dα,v(β)

is a valid disc, so that YDα,v(β) is a separable cover of XDα,v(β) and gives rise to a component of

(Yrst)s. This approach inspires the term part-square decomposition defined below.

Definition 4.1. Given a nonzero polynomial h(x) ∈ K̄[z], a part-square decomposition of h is a
way of writing h = q2 + ρ for some q(x), ρ(x) ∈ K̄[x], with deg(q) ≤ ddeg(h)/2e.

Given a part-square decomposition h = q2+ρ, we define the rational number tq,ρ := v(ρ)−v(h) ∈
Q ∪ {+∞}.

We moreover define the following properties of a part-square decomposition h = q2 + ρ.

(a) The decomposition is said to be good either if we have tq,ρ ≥ 2v(2) or if we have tq,ρ < 2v(2)
and there is no decomposition h = q̃2 + ρ̃ such that tq̃,ρ̃ > tq,ρ.

(b) The decomposition is said to be totally odd if ρ only consists of odd-degree terms.

Remark 4.2. We make the following observations about part-square decompositions.

(a) Definition 4.1 forces deg(ρ) ≤ deg(h) when h has even degree and deg(ρ) ≤ deg(h)+1 when
h has odd degree. The definition allows q to be equal to zero.

(b) The trivial part-square decomposition h = 02 + h has t0,h = 0; this immediately implies
that all good decompositions h = q2 + ρ satisfy tq,ρ ≥ 0.

(c) If h = q2 + ρ = (q′)2 + ρ′ are two good part-square decompositions for the same nonzero
polynomial h, then we have min{tq,ρ, 2v(2)} = min{tq′,ρ′ , 2v(2)} directly from Definition 4.1.

A fairly elementary algebraic argument shows that a totally odd part-square decomposition is
always good. Moreover, it turns out that a totally odd part-square decomposition of a polynomial
h always exists (so that a good part-square decomposition always exists), according to the following
proposition.

Proposition 4.3. Given a nonzero polynomial h(z) ∈ K̄[z], there always exists a totally odd part-
square decomposition h = q2 + ρ with q(z), ρ(z) ∈ K̄[z].

Proof. Let the polynomial he be the sum of the even-degree terms of h, whose roots are easily seen to
come in pairs ±√αi for some elements αi ∈ K̄. Writing c0z

m+c1z
m−1+ · · ·+cm =

√
c
∏
i(z+

√
αi),

where
√
c is a square root of the leading coefficient c of he, one verifies straightforwardly that setting

q to be the polynomial whose ith coefficient is ci for even i and
√
−1ci for odd i (given some fixed

square root of −1) produces a totally odd decomposition of h. �
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Now given any polynomial h and elements α ∈ K̄ and β ∈ K̄×, write hα,β for the “translated and
scaled” polynomial such that hα,β(xα,β) = h(x). It is almost immediate to see that if h = q2 + ρ
is a part-square decomposition, then hα,β = q2α,β + ρα,β is also a part-square decomposition, and

that in the case that α = 0 (i.e. if the coordinate is only scaled and not translated), if one of these
decompositions is totally odd, then so is the other. It is moreover elementary to verify that the
valuation v(hα,β) does not change if we replace α by another center of the disc Dα,v(β) or replace
β by another element of the same valuation; in other words, v(hα,β) depends only on the choice of
disc Dα,v(β). In light of this and of Remark 4.2(c), the following definition makes sense.

Definition 4.4. Given a polynomial h and a disc D ⊂ K̄, define vh(D) to be v(hα,β) for some
choice of α, β such that D = Dα,v(β).

Recalling the number tq,ρ ∈ Q ∪ {+∞} defined above, given a finite subset s ⊂ K̄ and a disc
D ⊂ K̄, let

ts(D) = vρ(D)− vh(D),

where h is a polynomial whose set of roots coincides with s and h = q2 + ρ is a good part-square
decomposition.

Our main use of the objects defined above is in the p = 2 setting when s ⊂ R is a cluster, and we
choose an element α ∈ s and compute the values tR(Dα,b) for rational numbers b ≤ d(s). It is not

difficult to see that the function b 7→ tR(Dα,b) is a piecewise linear function with rational slopes.
Our main result regarding the identification of valid discs containing a given cluster s is as follows.

Theorem 4.5. In the above situation, a disc D satisfying D∩R = s is valid if and only if we have
D = Dα,b, where b is either the greatest or the least (rational) number in the interval [d(s′), d(s)]

satisfying tR(Dα,b) = 2v(2) (where s′ as before is the smallest cluster properly containing s).

The above theorem visibly shows that Theorem 3.4(b) holds and that computing the number Bf,s
provided by Theorem 3.4(c) boils down to describing the piecewise linear function b 7→ tR(Dα,b)
(which in turn can always be computed using a totally odd decomposition of f).

Proposition 4.6. In the above situation, we have

tR(Dα,b) = min{ts(Dα,b), t
Rrs(Dα,b)}

for d(s) ≤ b ≤ d(s′), where s′ as before is the smallest cluster properly containing s.

The above proposition reduces the computation of b 7→ tR(Dα,b) to computations which are
simpler, as a polynomial with whose roots are s or Rr s is of lower degree and easier to work with
than f . In [8, §6], the authors have also developed further methods of simplifying the computation
of these piecewise linear functions via lower-degree polynomials that apply to many special cases.

5. Finding centers of valid discs in the p = 2 setting

Given the hyperelliptic curve y2 = f(x), with f(x) ∈ K[x] of odd degree 2g + 1, Proposition 4.3
allows us to produce (for instance by using the procedure explained in the proof) a totally odd
decomposition of the translated polynomial fT,1(z) := f(z+ T ), in which T remains generic rather
than being assigned to be particular center α ∈ K̄. Such a decomposition will have the form

fT,1 = q2T,1 + ρT,1,

with

qT,1(z) = Q0(T ) +Q1(T )z + . . .+Qg(T )zg and

ρT,1(z) = R1(T )z +R3(T )z3 + . . .+R2g+1(T )z2g+1,

where Qi(T ) and Ri(T ) are elements of K(T ), i.e. algebraic functions of the variable T .
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Definition 5.1. Let L ⊂ K(T ) be the smallest Galois extension of K(T ) to which R1(T ) belongs.
We define F (T ) ∈ K(T ) to be the norm of R1(T ) with respect to the extension L/K(T ). (It can be
shown that F (T ) is in fact a polynomial in T .)

Remark 5.2. In the cases of g ∈ {1, 2}, assuming for simplicity that f is monic, we may easily
find polynomials qT,1 and ρT,1 and compute F (T ) as the norm of R1(T ). For 0 ≤ i ≤ 2g + 1, let
Pi(T ) ∈ K[T ] be the zi-coefficient of f(z + T ) ∈ K[T ][z]. Then for g = 1, we have the formula

(10) F = P 2
1 − 4P2P0,

and for g = 2, we have the formula

(11) F = (P 2
1 − 4P2P0)

2 − 64P4P
3
0 .

Our motivation for defining the polynomial F is that we are able to obtain the following theorem,
which is essentially a generalization of [10, Theorem 5.1] (which treats only the geometrically
equidistant case); the underlying strategy of its proof is inspired by that of Lehr and Matignon.

Theorem 5.3. Each root of F is the center of a valid disc; conversely, if D is a valid disc which
contains no cluster, then D contains a root of F . Equivalently, each valid disc contains a root of f
or a root of F .

Given a root α of F which is a center of some valid disc D such that D∩R = ∅, it is possible to
show D that is the only valid disc containing α and no root of f and to find the radius of D using
minor variations of the methods discussed in §4: defining tR(D) for any disc D ⊂ K̄ as above, there
is exactly 1 rational number b in the interval (d(s),∞) such that tR(Dα,b) = 2v(2), where s is the
smallest cluster such that s ⊂ Dα,d(s), and the valid disc we are looking for is D = Dα,b.

6. The toric rank of a semistable model of a hyperelliptic curve

Let us begin by defining viable clusters, as they directly determine the toric rank of (Yrst)s.

Definition 6.1. We say that a cluster s is viable if the following are satisfied:

(a) s has even cardinality; and
(b) there exist 2 distinct valid discs D satisfying that either D ∩ R = s or D the minimal disc

such that D ∩R ) s.

Remark 6.2. In the above definition, Theorem 3.2 shows that in the p 6= 2 setting, (a) implies
(b), while Theorem 3.4(a) shows that in the p = 2 setting, (b) implies (a).

Definition 6.3. An cluster s is said to be übereven if it is viable and if all of its children clusters
are also viable.

Remark 6.4. In the p 6= 2 setting, every even-cardinality cluster is viable, and so an übereven
cluster is just a cluster whose children are all even; this is the definition of “übereven” used in [6].

Proposition 6.5. Let s be a viable cluster.

(a) The 2 valid discs D1, D2 ⊂ K containing s correspond to 2 components of (X (rst))s (corre-
sponding to the models XD1 ,XD2 of X) which meet at a node whose inverse image in (Yrst)s
consists of 2 nodes. Each of these 2 nodes has thickness equal to (δ(s) − Bf,s)/v(π) where
Bf,s is the “threshold depth” given by Theorem 3.4(c) (resp. Bf,s = 0) in the p = 2 (resp.
p 6= 2) setting (here π is a uniformizer of K ′).

(b) The cluster s is übereven if and only if the minimal disc Ds containing s is valid and the
special fiber (YDs)s (as defined above in §3.1 for p 6= 2 and §4 for p = 2) consists of 2
disjoint lines.
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It is not difficult, by applying a combinatorial argument to both parts of the above proposition,
to provide as a corollary a simple formula for the toric rank of the special fiber of the relatively
stable (and thus any semistable) model of Y .

Corollary 6.6. The toric rank of the special fiber (Yrst)s is given by the number of non-übereven
viable clusters.

7. Computations for hyperelliptic curves in genus 2

We now investigate the structure of (Yrst)s where Y is a genus-2 hyperelliptic curve; let Y : y2 =
f(x) be the equation of Y , where the polynomial f has degree 5. We moreover make the simplifying
assumptions that f is monic, that the depth of the set of roots R is 0, and that we have 0 ∈ R.
The denote the roots of f by a1 := 0, a2, . . . , a5. Clearly there may be 0, 1, 2, or 3 even-cardinality
clusters among the cluster data associated to f ; except for in the last case of 3 even-cardinality
clusters, there may be a single cardinality-3 cluster as well.

The below theorem describes our results on the possible structures of (Yrst)s depending on various
arithmetic conditions, under the assumption that there exists at most one even-cardinality cluster.
Actually, the theorem only addresses the case in which the even-cardinality cluster, if it exists, has
cardinality 2 and its parent cluster coincides with R, but it may be adapted to any other cluster
picture having at most one even-cardinality cluster; see Remark 7.2(a) below for more details. To
treat the case of more than one even-cardinality cluster, instead see Remark 7.2(b),(c).

Theorem 7.1. In the above situation with the above assumptions on the genus-2 hyperelliptic curve
Y : y2 = f(x), suppose that there are no cardinality-4 clusters and there is at most one cardinality-2
cluster s ⊂ R; if this cluster exists, we denote its relative depth by m := δ(s), whereas if there is
no even-cardinality cluster, we set m = 0. It is clear that R can contain at most one cardinality-3
cluster s′; if it exists, we denote its relative depth by m′ := δ(s′), whereas if there is no cardinality-3
cluster, we set m′ = 0. We assume that, when both m and m′ are > 0, we have s ∩ s′ = ∅.

We label the roots a1, . . . a5 of f in such a way that, when m > 0, we have s = {a1 = 0, a2}, and
when m′ > 0, we have s′ = {a3, a4, a5}. Under the assumption that m > 0, we write

(12) (1− a−13 z)(1− a−14 z)(1− a−15 z) = 1 +M1z +M2z
2 +M3z

3,

and let w = v(M1−2
√
M2) ≥ 0 for some choice of square root of M2; when m′ > 0, we have w = 0.

Define the polynomial

F (T ) = (P 2
1 (T )− 4P2(T )P0(T ))2 − 64P4(T )P 3

0 (T ) ∈ K[T ],

where Pi(T ) is the zi-coefficient of f(z+T ) for 0 ≤ i ≤ 5, which we have seen in Remark 5.2 is the
polynomial F defined in §5. For any root α ∈ K̄ of F , let f = q2 +ρ be a part-square decomposition
such that the “translated and scaled” part-square decomposition fα,1 = q2α,1+ρα,1 is totally odd such

that ρα,1 has no linear term, and let κ(α) be the valuation of the cubic term of ρα,1.
In the language of Theorem 3.4, when m > 0, we have Bf,s = max{4v(2) − w, 83v(2)}. The set

of valid discs and the structure of (Yrst)s are fully described more precisely as follows. All elements
αi mentioned in parts (b), (c), and (d) below may be chosen to be roots of F , so that in particular
κ(αi) is always defined.

(a) Suppose that m > 8
3v(2) and w ≥ 4

3v(2). Then there are exactly 2 valid discs D− := D0, 2
3
v(2)

and D+ := D0,m−2v(2) such that we have D± ∩ R = s. The special fiber (Yrst)s consists of
2 components corresponding to the discs D− and D+ which intersect at 2 nodes and have
abelian ranks 1 and 0 respectively.

(b) Suppose that m > 0 and 4v(2) −m < w < 4
3v(2). Then there are two valid discs D+ :=

D0,m−2v(2) and D− := D0,2v(2)−w such that we have D± ∩ R = s; their corresponding

components of (Yrst)s each have abelian rank 0 and intersect each other at 2 points. There is
moreover another valid disc Dα1,b1, which does not contain a root of f ; we have v(α1−ai) =
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1
2w for i = 1, 2, v(α1 − ai) = m′ for i = 3, 4, 5 and b1 = m′ + 1

3(w − κ(α1) + 2v(2)).
The corresponding component of (Yrst)s has abelian rank 1 and intersects the component
corresponding to D− at 1 node.

(c) Suppose that we have m > 0, w < 1
2m, and w ≤ 4v(2) − m. Then there are valid discs

D1 := Dα1,b1 and D2 := Dα2,b2 with v(α1 − ai) = 1
2w for i = 1, 2, v(α1 − ai) = m′

for i = 3, 4, 5, v(α2 − ai) = 1
2(m − w) for i = 1, 2, and v(α2 − ai) = 0 for i = 3, 4, 5,

b1 = m′+ 1
3(w− κ(α1) + 2v(2)), and b2 = 1

3(m−w− κ(α2) + 2v(2)). The discs Di each do
not contain a root of f if w < 4v(2) −m; when w = 4v(2) −m, the disc D1 does not, but
the disc D2 is the unique valid disc satisfying D2 ∩ R = s and coincides with D0,m−2v(2).

The special fiber (Yrst)s consists of 2 components corresponding to the discs D1 and D2,
each of abelian rank 1, which intersect at 1 node.

(d) Finally, suppose that we have m = 0, or 0 < m ≤ min{2w, 83v(2)}. Then there is a valid

disc D1 := Dα1,b1 with v(α1 − ai) = 1
4m for i = 1, 2, and v(α1 − ai) = 0 for i = 3, 4, 5, and

b1 ≥ v(α1). We have the following subcases.
(i) Suppose that κ(α1) <

2
5(12m + 2v(2)). Then there is a second valid disc D2 := Dα2,b2

where α2 satisfies v(α2 − ai) = 1
4m for i = 1, 2 and v(α2 − ai) = m′ for i = 3, 4, 5,

and we have b1 = 1
3(12m − κ(α1) + 2v(2)) and b2 = b1 + m′. Neither of the discs Di

contains a root of f . The special fiber (Yrst)s consists of 2 components corresponding
to the discs Di, each of abelian rank 1, which intersect at 1 node.

(ii) Suppose that κ(α1) ≥ 2
5(12m+ 2v(2)). Then the only valid disc is D1; it is (the unique

valid disc) satisfying D1 ∩ R = s if m = 8
3v(2) but otherwise does not contain a root

of f . Its depth is b1 = 1
5(12m + 2v(2)). The special fiber (Yrst)s thus has exactly 1

component, which has abelian rank 2 (so Y attains good reduction in this case).

Remark 7.2. The theorem only treats the situation where there are no cardinality-4 clusters and
at most one cardinality-2 cluster which is not contained in a cardinality-3 cluster; here we briefly
explain how to treat cases where this hypothesis does not hold.

(a) If we consider a situation where the only even-cardinality cluster s has relative depth m and
cardinality 4 (instead of 2), then on applying an appropriate fractional linear transforation,
we obtain cluster data for the resulting isomorphic hyperelliptic curve (now defined using a
different polynomial) in which there is a cardinality-2 cluster (and possibly a cardinality-3
cluster disjoint from it). From general formulas for such a fractional linear transformation,
one may relate the associated objects defined in the above theorem to those associated
to our original polynomial f and derive analogous statements to everything in the above
theorem. A similar trick may be used in the case that we begin with a cluster picture such
that there is a cardinality-3 cluster s′ containing 0.

(b) Suppose that there are exactly 2 even-cardinality clusters s1 and s2 containing roots a1 and
a2 respectively. Then it is possible to show that we have Bf,s1 = Bf,s2 = 4v(2) and to
compute each of the valid discs containing s1 or s2. In fact, this can be derived from the
theorem by observing that the quantity w, as defined in its statement, is equal to 0 when
there are exactly 2 even-cardinality clusters.

(c) In the case that there are 3 even-cardinality clusters, the computation of valid discs is in
general much less straightforward, but the authors have classified the outcomes in the case
that each of these clusters has relative depth ≥ 2v(2); in particular, if this inequality is strict
for all of them, then all of the 3 clusters are viable; the cardinality-4 cluster is übereven;
and Corollary 6.6 says that the toric rank is 2.

Remark 7.3. Let α ∈ K̄ be a root of F . One can show that the rational number κ(α) is well
defined in all contexts of the statement in which its precise value is relevant (more precisely, one
can show that it does not depend on the choice of totally odd decomposition with no linear term
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as long as it is < 2v(2), which is guaranteed to be the case outside of parts (a) and (d)(ii)). It can
be computed as

(13) κ(α) = v
(
P3(α)− 2

√
P4(α)

√
P2(α)− 2

√
P4(α)P0(α)

)
only for particular choices of the square roots in the above formula.

Example 7.4. Let Y be the hyperelliptic curve of genus 2 over Zunr
2 given by

y2 = x(x− 16)(x− 1)(x2 + x− 1),

so that we have a cardinality-2 cluster s = {0, 16} of relative (and absolute) depth m = 4v(2).
It is straightforward to compute that the polynomial in (12) equals 1 − 2z + z3 and so we have
w = v(−2 − 2

√
0) = v(2). The hypothesis of Theorem 7.1(b) clearly holds, and so we have valid

discs D1 := D− = D0,v(2) and D2 := D+ = D0,2v(2) satisfying D±∩R = s; the cluster s is therefore
viable. In fact, the changes in coordinate corresponding to these discs may be written as

(14) x = 2x1 = 4x2, y = 4y1 + 2x1 = 8y2 + 4x2.

We now get equations for the corresponding models Y1 and Y2 as

Y1 : y21 + x1y1 = 2x51 − 24x41 − x31 + 23x21 − 2x1

Y2 : y22 + x2y2 = 24x52 − 26x42 − 2x32 + 23x22 − x2
(15)

The special fibers of these models are the F̄2-curves given by

(16) (Y1)s : y21 + x1y1 = x31, y22 + x2y2 = x2.

The desingularizations of (Y1)s and (Y2)s are each smooth curves of genus 0 and give rise to 2 of
the components of (Yrst)s.

However, these are not all of the components of (Yrst)s, as Theorem 7.1(b) asserts the existence
of another valid disc D3 := Dα1,b1 for some root α1 of F with v(α1) = 1

2v(2) and b1 = 1− 1
3κ(α1).

Now through tedious but straightforward calculations, one can show that v(P3(α1)) = v(2) and
v(P4(α1)) = 1

2v(2) (where P3 and P4 are defined as in the statement of Theorem 7.1). From this
one may compute by writing down a general formula for a totally odd decomposition of a degree-5
polynomial that we have κ(α1) = v(2) and so b1 = 2

3v(2).

For an appropriate part-square decomposition f = q2 + ρ such that the decomposition fα1,1 =
q2α1,1

+ ρα1,1 is totally odd, the change in coordinates corresponding to D3 can be written as

x = 22/3x3 + α1, y = 23/2y3 + qα1,1(2
2/3x3)y3.

We now get an equation for the model Y3 corresponding to D3 as

(17) Y3 : y23 + 2−1/2qα1,1(2
2/3x3)y3 = 2−3ρα1,1(2

2/3x3).

Through further computations of valuations of polynomials appearing in (17), one can now readily
verify that the special fiber of Y3 is the F̄2-curve given by

(18) y23 + c1y3 = c2x
3
3,

for some c1, c2 ∈ k×, and its desingularization is a smooth curve of genus 1 which gives rise to the
remaining component of (Yrst)s. The configuration of the components of (Yrst)s is seen in Figure 1.
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V1

V3 V2

L1

L3 L2

Figure 1. The special fiber (Yrst)s, shown on the left, mapping to (X (rst))s; each

component Vi of (Yrst)s maps to each component Li := (XDi)s of (X (rst))s.
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